83,871 research outputs found

    The ⋆\star-operator and Invariant Subtraction Games

    Full text link
    We study 2-player impartial games, so called \emph{invariant subtraction games}, of the type, given a set of allowed moves the players take turn in moving one single piece on a large Chess board towards the position 0\boldsymbol 0. Here, invariance means that each allowed move is available inside the whole board. Then we define a new game, ⋆\star of the old game, by taking the PP-positions, except 0\boldsymbol 0, as moves in the new game. One such game is \W^\star= (Wythoff Nim)⋆^\star, where the moves are defined by complementary Beatty sequences with irrational moduli. Here we give a polynomial time algorithm for infinitely many PP-positions of \W^\star. A repeated application of ⋆\star turns out to give especially nice properties for a certain subfamily of the invariant subtraction games, the \emph{permutation games}, which we introduce here. We also introduce the family of \emph{ornament games}, whose PP-positions define complementary Beatty sequences with rational moduli---hence related to A. S. Fraenkel's `variant' Rat- and Mouse games---and give closed forms for the moves of such games. We also prove that (kk-pile Nim)⋆⋆^{\star\star} = kk-pile Nim.Comment: 30 pages, 5 figure

    Move ordering and communities in complex networks describing the game of go

    Full text link
    We analyze the game of go from the point of view of complex networks. We construct three different directed networks of increasing complexity, defining nodes as local patterns on plaquettes of increasing sizes, and links as actual successions of these patterns in databases of real games. We discuss the peculiarities of these networks compared to other types of networks. We explore the ranking vectors and community structure of the networks and show that this approach enables to extract groups of moves with common strategic properties. We also investigate different networks built from games with players of different levels or from different phases of the game. We discuss how the study of the community structure of these networks may help to improve the computer simulations of the game. More generally, we believe such studies may help to improve the understanding of human decision process.Comment: 14 pages, 21 figure

    The game of go as a complex network

    Full text link
    We study the game of go from a complex network perspective. We construct a directed network using a suitable definition of tactical moves including local patterns, and study this network for different datasets of professional tournaments and amateur games. The move distribution follows Zipf's law and the network is scale free, with statistical peculiarities different from other real directed networks, such as e. g. the World Wide Web. These specificities reflect in the outcome of ranking algorithms applied to it. The fine study of the eigenvalues and eigenvectors of matrices used by the ranking algorithms singles out certain strategic situations. Our results should pave the way to a better modelization of board games and other types of human strategic scheming.Comment: 6 pages, 9 figures, final versio

    Remarks on the k-error linear complexity of p(n)-periodic sequences

    Get PDF
    Recently the first author presented exact formulas for the number of 2ⁿn-periodic binary sequences with given 1-error linear complexity, and an exact formula for the expected 1-error linear complexity and upper and lower bounds for the expected k-error linear complexity, k >2, of a random 2ⁿn-periodic binary sequence. A crucial role for the analysis played the Chan-Games algorithm. We use a more sophisticated generalization of the Chan-Games algorithm by Ding et al. to obtain exact formulas for the counting function and the expected value for the 1-error linear complexity for pⁿn-periodic sequences over Fp, p prime. Additionally we discuss the calculation of lower and upper bounds on the k-error linear complexity of pⁿn-periodic sequences over Fp

    Infinite sequential Nash equilibrium

    Full text link
    In game theory, the concept of Nash equilibrium reflects the collective stability of some individual strategies chosen by selfish agents. The concept pertains to different classes of games, e.g. the sequential games, where the agents play in turn. Two existing results are relevant here: first, all finite such games have a Nash equilibrium (w.r.t. some given preferences) iff all the given preferences are acyclic; second, all infinite such games have a Nash equilibrium, if they involve two agents who compete for victory and if the actual plays making a given agent win (and the opponent lose) form a quasi-Borel set. This article generalises these two results via a single result. More generally, under the axiomatic of Zermelo-Fraenkel plus the axiom of dependent choice (ZF+DC), it proves a transfer theorem for infinite sequential games: if all two-agent win-lose games that are built using a well-behaved class of sets have a Nash equilibrium, then all multi-agent multi-outcome games that are built using the same well-behaved class of sets have a Nash equilibrium, provided that the inverse relations of the agents' preferences are strictly well-founded.Comment: 14 pages, will be published in LMCS-2011-65
    • 

    corecore