370 research outputs found

    Close-Range Sensing and Data Fusion for Built Heritage Inspection and Monitoring - A Review

    Get PDF
    Built cultural heritage is under constant threat due to environmental pressures, anthropogenic damages, and interventions. Understanding the preservation state of monuments and historical structures, and the factors that alter their architectural and structural characteristics through time, is crucial for ensuring their protection. Therefore, inspection and monitoring techniques are essential for heritage preservation, as they enable knowledge about the altering factors that put built cultural heritage at risk, by recording their immediate effects on monuments and historic structures. Nondestructive evaluations with close-range sensing techniques play a crucial role in monitoring. However, data recorded by different sensors are frequently processed separately, which hinders integrated use, visualization, and interpretation. This article’s aim is twofold: i) to present an overview of close-range sensing techniques frequently applied to evaluate built heritage conditions, and ii) to review the progress made regarding the fusion of multi-sensor data recorded by them. Particular emphasis is given to the integration of data from metric surveying and from recording techniques that are traditionally non-metric. The article attempts to shed light on the problems of the individual and integrated use of image-based modeling, laser scanning, thermography, multispectral imaging, ground penetrating radar, and ultrasonic testing, giving heritage practitioners a point of reference for the successful implementation of multidisciplinary approaches for built cultural heritage scientific investigations

    Integración de metodologías geomáticas y creación de una aplicación patrimonial usando realidad aumentada

    Get PDF
    [EN] 3D modelling of archaeological and historical structures is the new frontier in the field of conservation science. Similarly, the identification of buried finds, which enhances their multimedia diffusion and restoration, has gained relevance. As such sites often have a high level of structural complexity and complicated territorial geometries, accuracy in the creation of 3D models and the use of sophisticated algorithms for georadar data analysis are crucial. This research is the first step in a larger project aimed at reclaiming the ancient villages located in the Greek area of southern Italy. The present study focuses on the restoration of the village of Africo (RC), a village hit by past flooding. The survey began with a laser scan of the church of St. Nicholas, using both the Faro Focus3D and the Riegl LMS-Z420i laser scanner. At the same time, georadar analyses were carried out in order to pinpoint any buried objects. In the processing phase, our own MATLAB algorithms were used for both laser scanner and georadar datasets and the results compared with those obtained from the scanners’ respective proprietary software. We are working to develop a tourism app in both augmented and virtual reality environments, in order to disseminate and improve access to cultural heritage. The app allows users to see the 3D model and simultaneously access information on the site integrated from a variety of repositories. The aim is to create an immersive visit, in this case, to the church of St. Nicholas.Highlights:Use of different algorithms for registration of terrestrial laser scans and analysis of the data obtained.3D acquisition, processing and restitution methodology from georadar data.Implementation of a tourist app in both virtual and augmented reality by integrating geomatics methodologies.[ES] El modelado 3D de estructuras arqueológicas e históricas es el nuevo hito en el campo de la ciencia de la conservación. De manera similar, la identificación de hallazgos enterrados ha ganado relevancia, ya que mejora la difusión multimedia y la restauración. Como a menudo los sitios en estudio tienen un alto nivel de complejidad estructural y geometrías territoriales complicadas, la precisión en la creación de modelos 3D y el uso de algoritmos sofisticados para el análisis de datos georradar son puntos cruciales. Esta investigación es el primer paso en un proyecto más grande destinado a recuperar las aldeas antiguas de la zona griega al sur de Calabria. El presente estudio se centra en la restauración de la aldea Africo (RC), que fue golpeada en el pasado por una inundación. El trabajo comenzó con el análisis de los datos láser de la iglesia de San Nicolás en el centro del pueblo, utilizando el láser escáner Faro Focus3D y el Riegl LMS-Z420i. Paralelamente, se llevaron a cabo análisis georradar para resaltar cualquier objeto enterrado. En la fase de procesamiento, se utilizaron nuestros algoritmos desarrollados en MATLAB para ambos conjuntos de datos, escáner láser y georradar. Los resultados se compararon con los obtenidos con el software propietario respectivo. Estamos trabajando en el desarrollo de una aplicación turística en entornos de realidad virtual y aumentada que permita difundir y apreciar el patrimonio cultural. Por consiguiente, la aplicación mencionada se ha implementado de manera que permita al usuario ver el modelo 3D y la información en realidad aumentada. Con la realidad aumentada, de hecho, intentamos que haya más información disponible de otros repositorios integrándolos con monumentos, bellezas naturales, rincones característicos, creando así las condiciones para una visita inmersiva, en el caso aquí propuesto la iglesia de San Nicolás.Barrile, V.; Fotia, A.; Bilotta, G.; De Carlo, D. (2019). Integration of geomatics methodologies and creation of a cultural heritage app using augmented reality. Virtual Archaeology Review. 10(20):40-51. https://doi.org/10.4995/var.2019.10361SWORD40511020Akca, D., & Gruen, A. (2007). Generalized least squares multiple 3D surface matching. ISPRS WS Laser Scanning 2007, 36(3), 1-7. https://doi.org/10.3929/ethz-a-005748609Annan, A. P., & Cosway, S. W. (1994). GPR frequency selection. In Proceeding of the Fifth International Conference on Ground Penetrating Radar (GPR '94), June 12-16, Kitchener, Ontario, Canada, 747-760.Bae, H., Golparvar-Fard, M., & White, J. (2013). High-precision vision-based mobile augmented reality system for context-aware architectural, engineering, construction and facility management (AEC/FM) applications. Visualization in Engineering 1(1), 1-13. https://doi.org/10.1186/2213-7459-1-3Ballabeni, A., Apollonio, F. I., Gaiani, M., & Remondino, F. (2015). Advances in image pre-processing to improve automated 3D reconstruction. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences Archives, XL-5/W4, 315-323. https://doi.org/10.5194/isprsarchives-XL-5-W4-315-2015Barazzetti, L., Remondino, F., & Scaioni, M. (2010). Orientation and 3D modelling from markerless terrestrial images: Combining accuracy with automation. Photogrammetric Record, 25(132), 356-381. https://doi.org/10.1111/j.1477-9730.2010.00599.xBarrile, V., & Bilotta, G. (2014). Self-localization by laser scanner and GPS in automated surveys. Computational Problems in Engineering. Lecture Notes in Electrical Engineering, Springer, 307, 293-313.Barrile, V., Fotia, A. & Bilotta, G. (2018). Geomatics and augmented reality experiments for the cultural heritage. Applied Geomatics. https://doi.org/10.1007/s12518-018-0231-5Barrile, V., Nunnari, A., & Ponterio, R. C. (2016). Laser scanner for the Architectural and Cultural Heritage and Applications for the Dissemination of the 3D Model. Procedia: Social & Behavioral Sciences, 223, 555-560. https://doi.org/10.1016/j.sbspro.2016.05.313.Barrile, V., Meduri, G. M., & Bilotta, G. (2011). Laser scanner technology for complex surveying structures. WSEAS Transactions on Signal Processing, 7, 65-74.Brumana, R., Oreni, D., Caspani, S., & Previtali, M. (2018). Virtual museums and built environment: narratives and immersive experience via multi-temporal geodata hub. Virtual Archaeology Review, 19(9), 34-49,. https://doi.org/10.4995/var.2018.9918.Conyers, L. B., & Goodman, D. (1997). Ground-Penetrating Radar - An Introduction for Archaeologists. Walnut Creek, CA: AltaMira Press, A Division of Sage Publications, Inc.Cuca, B., Brumana, R., Scaioni, M., & Oreni, D. (2011). Spatial data management of temporal map series for cultural and environmental heritage. International Journal of Spatial Data Infrastructures Research, 6, 1-31. https://doi.org/10.2902/1725-0463.2011.06.art5Davis, J. L., & Annan, A. P. (1989). Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy, Geophysical Prospecting, 37, 531-551. https://doi.org/10.1111/j.1365-2478.1989.tb02221.xKraus, K. (2007). Photogrammetry-Geometry from images and laser scans. Berlin: Walter de Gruyter.Goodman, D., Nishimura, Y., & Tobita, K. (1994). GPRSIM forward modeling software and time slices in ground penetrating radar surveys. In Proceedings of the Fifth International Conference on Ground Penetrating Radar (GPR '94), June 12-16, Kitchener, Ontario, Canada, 31-43.Grandjean, G., & Gourry, J. C. (1996): GPR data processing for 3D fracture mapping in a marble quarry (Thassos, Greece). Journal of Applied Geophysics, 36, 19-30. https://doi.org/10.1016/S0926-9851(96)00029-8Grasmueck, M. (1996): 3D ground-penetrating radar applied to fracture imaging in gneiss. Geophysics, 61 (4), 1050-1064.Liu, X., Serhir, M., Kameni, A., Lambert, M., & Pichon, L. (2017). Ground penetrating radar data imaging via Kirchhoff migration method. In Applied Computational Electromagnetics Society (ACES 2017), Mar 2017, Florence, Italy,1-2. https://doi.org/10.23919/ROPACES.2017.7916395Merino, A., Márquez, C., & González, R. (2018). APP 3D: sculpture cycle of the Torreparedones forum (Baena, Córdoba). Virtual Archaeology Review, 19(9), 89-101. https://doi.org/10.4995/var.2018.9424Monti, C., Brumana, R., Achille, C., & Fregonese, L. (2004). Per un moderno rilievo della basilica di San Lorenzo tra opera, progetto e trasformazioni. Milan: Silvana Ed.Ortega-Ramirez, J., Bano, M., Villa-Alvarado, L. A., Junco-Sanchez, R., Pifia-Cetina, M., Estrada-Apatiza, S., Vera-Sanchez, J. C., & Hernández-López, A. (2018). Ground penetrating radar investigation of an ancient Spanish fortress: The Fort of San Diego, Acapulco, Mexico. In: 17th International Conference on Ground Penetrating Radar (GPR) 18-21 June 2018, 1-4. https://doi.org/10.1109/ICGPR.2018.8441550Persico, R., & Sato, M. (2017). Ground-Penetrating Radar: Technologies and Data Processing Issues for Applications in the Field of Cultural Heritage. In: N. Masini, & F. Soldovieri (Eds), Sensing the Past. Geotechnologies and the Environment (pp. 175-202), Cham: Springer. https://doi.org/10.1007/978-3-319-50518-3_9Rinaudo, F., Bornaz, L., & Ardissone, P. (2007). 3D high accuracy survey and modelling for Cultural Heritage Documentation and Restoration. Vast 2007-future technologies to empower heritage professionals, November 26-29, 2007, Brighton, UK, Archaeolingua Hun, 19-23.Sigurdsson, T., & Overgaard, T. (1998). Application of GPR for 3D visualization of geological and structural variation in a limestone formation. Journal of Applied Geophysics, 40, 29-36

    ARCHAEOLOGY AND THE COMPUTING AGE

    Get PDF
    The utilization of computer technology applied to historical artifact investigation has opened a number of locked doors despite numerous concerns by critics. Through the use of computer technology, both scientist and historians now have the ability to perform in-depth investigations into aspects surrounding various questionable historical occurrences. However, some critics feel the application of computer technology could bring unwanted answers to some historically significant events. In this paper I will introduce my research by initially giving a brief background into the evolution of computer technology applied to historical investigation. Through the explanation of various technological tools of the trade, I will attempt to justify computing technology’s practicality through examples such as; finding lost history, science vs. religion, solving mystery, and historical preservation

    Remote sensing and data fusion of cultural and physical landscapes

    Get PDF
    This dissertation is written as part of the three-article option offered by the Geography Department at UNC Greensboro. Each article addresses specific research issues within Remote Sensing, Photogrammetry, and three-dimensional modeling related structural and subsurface remote sensing of historic cultural landscapes. The articles submitted in this dissertation are both separate study sites and research questions, but the unifying theme of geographic research methods applies throughout. The first article is titled Terrestrial Lidar and GPR Investigations into the Third Line of Battle at Guilford Courthouse National Military Park, Guilford County, North Carolina is published in the book Digital Methods and Remote Sensing in Archaeology: Archaeology in the Age of Sensing. Forte, Maurizio, Campana, Stefano R.L. (Eds.) 2016. The results of the research demonstrate the successful exportation of GPR data into three-dimensional point clouds. Subsequently, the converted GPR points in conjunction with the TLS were explored to aid in the identification of the colonial subsurface. The second article submitted for consideration is titled “Three-Dimensional Modeling using Terrestrial LiDAR, Unmanned Aerial Vehicles, and Digital Cameras at House in the Horseshoe State Historic Site, Sanford, North Carolina.” There are two different research components to this study, modeling a structure and the landscape. The structure modeling section compares three different remote sensing approaches to the capture and three-dimensional model creation of a historic building. A detailed comparison is made between the photogrammetric models generated from digital camera photography, a terrestrial laser scanner (TLS) and an unmanned aerial vehicle (UAS). The final article, “Geophysical Investigations at the Harper House Bentonville Battlefield, NC State Historic Site” submitted focuses on the Harper House located in at the Bentonville Civil War battlefield. UNCG conducted a geophysical survey using a ground penetrating radar and gradiometer. The findings from the data were used to determine and pinpoint areas of interest for subsequent excavation
    corecore