579 research outputs found

    Syntactic Monoids in a Category

    Get PDF
    The syntactic monoid of a language is generalized to the level of a symmetric monoidal closed category D. This allows for a uniform treatment of several notions of syntactic algebras known in the literature, including the syntactic monoids of Rabin and Scott (D = sets), the syntactic semirings of Polak (D = semilattices), and the syntactic associative algebras of Reutenauer (D = vector spaces). Assuming that D is an entropic variety of algebras, we prove that the syntactic D-monoid of a language L can be constructed as a quotient of a free D-monoid modulo the syntactic congruence of L, and that it is isomorphic to the transition D-monoid of the minimal automaton for L in D. Furthermore, in case the variety D is locally finite, we characterize the regular languages as precisely the languages with finite syntactic D-monoids

    Small NFAs from Regular Expressions: Some Experimental Results

    Full text link
    Regular expressions (res), because of their succinctness and clear syntax, are the common choice to represent regular languages. However, efficient pattern matching or word recognition depend on the size of the equivalent nondeterministic finite automata (NFA). We present the implementation of several algorithms for constructing small epsilon-free NFAss from res within the FAdo system, and a comparison of regular expression measures and NFA sizes based on experimental results obtained from uniform random generated res. For this analysis, nonredundant res and reduced res in star normal form were considered.Comment: Proceedings of 6th Conference on Computability in Europe (CIE 2010), pages 194-203, Ponta Delgada, Azores, Portugal, June/July 201

    A General Framework for the Derivation of Regular Expressions

    Full text link
    The aim of this paper is to design a theoretical framework that allows us to perform the computation of regular expression derivatives through a space of generic structures. Thanks to this formalism, the main properties of regular expression derivation, such as the finiteness of the set of derivatives, need only be stated and proved one time, at the top level. Moreover, it is shown how to construct an alternating automaton associated with the derivation of a regular expression in this general framework. Finally, Brzozowski's derivation and Antimirov's derivation turn out to be a particular case of this general scheme and it is shown how to construct a DFA, a NFA and an AFA for both of these derivations.Comment: 22 page

    The Bottom-Up Position Tree Automaton, the Father Automaton and their Compact Versions

    Full text link
    The conversion of a given regular tree expression into a tree automaton has been widely studied. However, classical interpretations are based upon a Top-Down interpretation of tree automata. In this paper, we propose new constructions based on the Gluskov's one and on the one of Ilie and Yu one using a Bottom-Up interpretation. One of the main goals of this technique is to consider as a next step the links with deterministic recognizers, consideration that cannot be performed with classical Top-Down approaches. Furthermore, we exhibit a method to factorize transitions of tree automata and show that this technique is particularly interesting for these constructions, by considering natural factorizations due to the structure of regular expression.Comment: extended version of a paper accepted at CIAA 201

    From Finite Automata to Regular Expressions and Back--A Summary on Descriptional Complexity

    Full text link
    The equivalence of finite automata and regular expressions dates back to the seminal paper of Kleene on events in nerve nets and finite automata from 1956. In the present paper we tour a fragment of the literature and summarize results on upper and lower bounds on the conversion of finite automata to regular expressions and vice versa. We also briefly recall the known bounds for the removal of spontaneous transitions (epsilon-transitions) on non-epsilon-free nondeterministic devices. Moreover, we report on recent results on the average case descriptional complexity bounds for the conversion of regular expressions to finite automata and brand new developments on the state elimination algorithm that converts finite automata to regular expressions.Comment: In Proceedings AFL 2014, arXiv:1405.527

    A Fibrational Approach to Automata Theory

    Get PDF
    For predual categories C and D we establish isomorphisms between opfibrations representing local varieties of languages in C, local pseudovarieties of D-monoids, and finitely generated profinite D-monoids. The global sections of these opfibrations are shown to correspond to varieties of languages in C, pseudovarieties of D-monoids, and profinite equational theories of D-monoids, respectively. As an application, we obtain a new proof of Eilenberg's variety theorem along with several related results, covering varieties of languages and their coalgebraic modifications, Straubing's C-varieties, fully invariant local varieties, etc., within a single framework

    Testing the Equivalence of Regular Languages

    Full text link
    The minimal deterministic finite automaton is generally used to determine regular languages equality. Antimirov and Mosses proposed a rewrite system for deciding regular expressions equivalence of which Almeida et al. presented an improved variant. Hopcroft and Karp proposed an almost linear algorithm for testing the equivalence of two deterministic finite automata that avoids minimisation. In this paper we improve the best-case running time, present an extension of this algorithm to non-deterministic finite automata, and establish a relationship between this algorithm and the one proposed in Almeida et al. We also present some experimental comparative results. All these algorithms are closely related with the recent coalgebraic approach to automata proposed by Rutten
    • …
    corecore