44,529 research outputs found

    Families of sequences with good family complexity and cross-correlation measure

    Full text link
    In this paper we study pseudorandomness of a family of sequences in terms of two measures, the family complexity (ff-complexity) and the cross-correlation measure of order â„“\ell. We consider sequences not only on binary alphabet but also on kk-symbols (kk-ary) alphabet. We first generalize some known methods on construction of the family of binary pseudorandom sequences. We prove a bound on the ff-complexity of a large family of binary sequences of Legendre-symbols of certain irreducible polynomials. We show that this family as well as its dual family have both a large family complexity and a small cross-correlation measure up to a rather large order. Next, we present another family of binary sequences having high ff-complexity and low cross-correlation measure. Then we extend the results to the family of sequences on kk-symbols alphabet.Comment: 13 pages. Comments are welcome

    A Family of Binary Sequences with Optimal Correlation Property and Large Linear Span

    Full text link
    A family of binary sequences is presented and proved to have optimal correlation property and large linear span. It includes the small set of Kasami sequences, No sequence set and TN sequence set as special cases. An explicit lower bound expression on the linear span of sequences in the family is given. With suitable choices of parameters, it is proved that the family has exponentially larger linear spans than both No sequences and TN sequences. A class of ideal autocorrelation sequences is also constructed and proved to have large linear span.Comment: 21 page

    New Constructions of Zero-Correlation Zone Sequences

    Full text link
    In this paper, we propose three classes of systematic approaches for constructing zero correlation zone (ZCZ) sequence families. In most cases, these approaches are capable of generating sequence families that achieve the upper bounds on the family size (KK) and the ZCZ width (TT) for a given sequence period (NN). Our approaches can produce various binary and polyphase ZCZ families with desired parameters (N,K,T)(N,K,T) and alphabet size. They also provide additional tradeoffs amongst the above four system parameters and are less constrained by the alphabet size. Furthermore, the constructed families have nested-like property that can be either decomposed or combined to constitute smaller or larger ZCZ sequence sets. We make detailed comparisons with related works and present some extended properties. For each approach, we provide examples to numerically illustrate the proposed construction procedure.Comment: 37 pages, submitted to IEEE Transactions on Information Theor

    Low Correlation Sequences over the QAM Constellation

    Full text link
    This paper presents the first concerted look at low correlation sequence families over QAM constellations of size M^2=4^m and their potential applicability as spreading sequences in a CDMA setting. Five constructions are presented, and it is shown how such sequence families have the ability to transport a larger amount of data as well as enable variable-rate signalling on the reverse link. Canonical family CQ has period N, normalized maximum-correlation parameter theta_max bounded above by A sqrt(N), where 'A' ranges from 1.8 in the 16-QAM case to 3.0 for large M. In a CDMA setting, each user is enabled to transfer 2m bits of data per period of the spreading sequence which can be increased to 3m bits of data by halving the size of the sequence family. The technique used to construct CQ is easily extended to produce larger sequence families and an example is provided. Selected family SQ has a lower value of theta_max but permits only (m+1)-bit data modulation. The interleaved 16-QAM sequence family IQ has theta_max <= sqrt(2) sqrt(N) and supports 3-bit data modulation. The remaining two families are over a quadrature-PAM (Q-PAM) subset of size 2M of the M^2-QAM constellation. Family P has a lower value of theta_max in comparison with Family SQ, while still permitting (m+1)-bit data modulation. Interleaved family IP, over the 8-ary Q-PAM constellation, permits 3-bit data modulation and interestingly, achieves the Welch lower bound on theta_max.Comment: 21 pages, 3 figures. To appear in IEEE Transactions on Information Theory in February 200
    • …
    corecore