67,241 research outputs found

    Prediction of Emerging Technologies Based on Analysis of the U.S. Patent Citation Network

    Full text link
    The network of patents connected by citations is an evolving graph, which provides a representation of the innovation process. A patent citing another implies that the cited patent reflects a piece of previously existing knowledge that the citing patent builds upon. A methodology presented here (i) identifies actual clusters of patents: i.e. technological branches, and (ii) gives predictions about the temporal changes of the structure of the clusters. A predictor, called the {citation vector}, is defined for characterizing technological development to show how a patent cited by other patents belongs to various industrial fields. The clustering technique adopted is able to detect the new emerging recombinations, and predicts emerging new technology clusters. The predictive ability of our new method is illustrated on the example of USPTO subcategory 11, Agriculture, Food, Textiles. A cluster of patents is determined based on citation data up to 1991, which shows significant overlap of the class 442 formed at the beginning of 1997. These new tools of predictive analytics could support policy decision making processes in science and technology, and help formulate recommendations for action

    Just how difficult can it be counting up R&D funding for emerging technologies (and is tech mining with proxy measures going to be any better?)

    Get PDF
    Decision makers considering policy or strategy related to the development of emerging technologies expect high quality data on the support for different technological options. A natural starting point would be R&D funding statistics. This paper explores the limitations of such aggregated data in relation to the substance and quantification of funding for emerging technologies. Using biotechnology as an illustrative case, we test the utility of a novel taxonomy to demonstrate the endemic weaknesses in the availability and quality of data from public and private sources. Using the same taxonomy, we consider the extent to which tech-mining presents an alternative, or potentially complementary, way to determine support for emerging technologies using proxy measures such as patents and scientific publications

    The New Turkish Trademark Law

    Get PDF
    Since 1980, the Turkish economy has gradually gained a liberal character through the elimination of government intervention in the economy and the removal of exchange restrictions and customs barriers. These changes in economic policy are related to Turkey\u27s desire to foster closer economic links with the European Union (“EU” or “Community”). Relations between Turkey and the European Union take place within the framework of an Association Agreement (“Ankara Agreement”). The Ankara Agreement was signed on September 12, 1963, and became effective on January 1, 1973. The Ankara Agreement provides the possibility of Turkey\u27s eventual membership in the European Union. Undoubtedly, relations with the European Union have had an important impact on recent reforms in the fields of intellectual and industrial property rights in Turkey. Following Turkey\u27s application for full Community membership, the necessity for reform in the field of trademark law, as in other fields of intellectual and industrial property rights, has become an important issue for the country. This Article summarizes the current Turkish trademark laws, and discusses their harmony with EU trademark law

    Science and Technology Cooperation in Cross-border Regions::A Proximity Approach with Evidence for Northern Europe

    Get PDF
    Given the sheer number of cross-border regions (CBRs) within the EU, their socio-economic importance has been recognized both by policy-makers and academics. Recently, the novel concept of cross-border regional innovation system has been introduced to guide the assessment of integration processes in CBRs. A central focus of this concept is set on analyzing the impact of varying types of proximity (cognitive, technological, etc.) on cross-border cooperation. Previous empirical applications of the concept have, however, relied on individual case studies and varying methodologies, thus complicating and constraining comparisons between different CBRs. Here a broader view is provided by comparing 28 Northern European CBRs. The empirical analysis utilizes economic, science and technology (S&T) statistics to construct proximity indicators and measures S&T integration in the context of cross-border cooperation. The findings from descriptive statistics and exploratory count data regressions show that technological and cognitive proximity measures are significantly related to S&T cooperation activities (cross-border co-publications and co-patents). Taken together, our empirical approach underlines the feasibility of utilizing the proximity approach for comparative analyses in CBR settings

    Forecasting the Spreading of Technologies in Research Communities

    Get PDF
    Technologies such as algorithms, applications and formats are an important part of the knowledge produced and reused in the research process. Typically, a technology is expected to originate in the context of a research area and then spread and contribute to several other fields. For example, Semantic Web technologies have been successfully adopted by a variety of fields, e.g., Information Retrieval, Human Computer Interaction, Biology, and many others. Unfortunately, the spreading of technologies across research areas may be a slow and inefficient process, since it is easy for researchers to be unaware of potentially relevant solutions produced by other research communities. In this paper, we hypothesise that it is possible to learn typical technology propagation patterns from historical data and to exploit this knowledge i) to anticipate where a technology may be adopted next and ii) to alert relevant stakeholders about emerging and relevant technologies in other fields. To do so, we propose the Technology-Topic Framework, a novel approach which uses a semantically enhanced technology-topic model to forecast the propagation of technologies to research areas. A formal evaluation of the approach on a set of technologies in the Semantic Web and Artificial Intelligence areas has produced excellent results, confirming the validity of our solution

    ?????? ???????????? ????????? ?????? ??????????????? ?????? : ????????? ?????? ?????? ??????????????? ????????????

    Get PDF
    Department of Management EngineeringFirms participating in printer industries have invested their constrained resources into technology development in order to sustain their competitiveness in the industry. Considering the fast-changing market circumstances, each firm???s own investment decisions on technology portfolio may directly affect their performance. In this study, we analyzed patent data, namely number of forward citations and technological classification data (CPC). Using this data, the technological portfolio of a specific firm can be identified, which can further help our understanding on firms??? R&D investment strategies. Number of studies mainly focused on patent class combinations of individual technology level, but portfolios of patent class at a firm level have been understudied. In this study, we tracked the change of class composition within each firms??? technological patents??? portfolio and attempted to identify practical and theoretical implications to portfolio management. We utilized Entropy Index, Co-occurrence and cosine similarities measurements for each indicating diversification, patent scope and portfolio similarities within each patents??? classification subclasses. Additionally, performance evaluation of each portfolio is conducted using forward citation data. This paper shows that in-depth patent data analysis can allow us to explore deeper insights at various levels, individual technology, products and product lines, and firms sufficing different stories.ope

    Measuring the impact of innovation on firm value: a new approach

    Get PDF
    Most of the existing empirical literature on the relationship of firm value and knowledge capital is based on the stock market valuation of companies. However, the assets of many firms are not publicly traded, and hence the calculation of market value is limited to a subsample of firms. We suggest to use a credit rating score instead and present an empirical analysis. It turns out that innovative firms, i.e. those with a reasonable knowledge stock, have a better credit rating and thus, as we propose, a higher value. However, too much of innovative activi-ties is seen as risky and the firm value decreases. --Firm Value,Credit Rating,Innovation,Intellectual Property Discrete Regression Models
    • 

    corecore