6,697 research outputs found

    Keeping Authorities "Honest or Bust" with Decentralized Witness Cosigning

    Get PDF
    The secret keys of critical network authorities - such as time, name, certificate, and software update services - represent high-value targets for hackers, criminals, and spy agencies wishing to use these keys secretly to compromise other hosts. To protect authorities and their clients proactively from undetected exploits and misuse, we introduce CoSi, a scalable witness cosigning protocol ensuring that every authoritative statement is validated and publicly logged by a diverse group of witnesses before any client will accept it. A statement S collectively signed by W witnesses assures clients that S has been seen, and not immediately found erroneous, by those W observers. Even if S is compromised in a fashion not readily detectable by the witnesses, CoSi still guarantees S's exposure to public scrutiny, forcing secrecy-minded attackers to risk that the compromise will soon be detected by one of the W witnesses. Because clients can verify collective signatures efficiently without communication, CoSi protects clients' privacy, and offers the first transparency mechanism effective against persistent man-in-the-middle attackers who control a victim's Internet access, the authority's secret key, and several witnesses' secret keys. CoSi builds on existing cryptographic multisignature methods, scaling them to support thousands of witnesses via signature aggregation over efficient communication trees. A working prototype demonstrates CoSi in the context of timestamping and logging authorities, enabling groups of over 8,000 distributed witnesses to cosign authoritative statements in under two seconds.Comment: 20 pages, 7 figure

    Distributed Random Process for a Large-Scale Peer-to-Peer Lottery

    Get PDF
    Most online lotteries today fail to ensure the verifiability of the random process and rely on a trusted third party. This issue has received little attention since the emergence of distributed protocols like Bitcoin that demonstrated the potential of protocols with no trusted third party. We argue that the security requirements of online lotteries are similar to those of online voting, and propose a novel distributed online lottery protocol that applies techniques developed for voting applications to an existing lottery protocol. As a result, the protocol is scalable, provides efficient verification of the random process and does not rely on a trusted third party nor on assumptions of bounded computational resources. An early prototype confirms the feasibility of our approach

    Finding Safety in Numbers with Secure Allegation Escrows

    Full text link
    For fear of retribution, the victim of a crime may be willing to report it only if other victims of the same perpetrator also step forward. Common examples include 1) identifying oneself as the victim of sexual harassment, especially by a person in a position of authority or 2) accusing an influential politician, an authoritarian government, or ones own employer of corruption. To handle such situations, legal literature has proposed the concept of an allegation escrow: a neutral third-party that collects allegations anonymously, matches them against each other, and de-anonymizes allegers only after de-anonymity thresholds (in terms of number of co-allegers), pre-specified by the allegers, are reached. An allegation escrow can be realized as a single trusted third party; however, this party must be trusted to keep the identity of the alleger and content of the allegation private. To address this problem, this paper introduces Secure Allegation Escrows (SAE, pronounced "say"). A SAE is a group of parties with independent interests and motives, acting jointly as an escrow for collecting allegations from individuals, matching the allegations, and de-anonymizing the allegations when designated thresholds are reached. By design, SAEs provide a very strong property: No less than a majority of parties constituting a SAE can de-anonymize or disclose the content of an allegation without a sufficient number of matching allegations (even in collusion with any number of other allegers). Once a sufficient number of matching allegations exist, the join escrow discloses the allegation with the allegers' identities. We describe how SAEs can be constructed using a novel authentication protocol and a novel allegation matching and bucketing algorithm, provide formal proofs of the security of our constructions, and evaluate a prototype implementation, demonstrating feasibility in practice.Comment: To appear in NDSS 2020. New version includes improvements to writing and proof. The protocol is unchange
    • …
    corecore