442 research outputs found

    Stochastic models for biological evolution

    Get PDF
    In this work, we deal with the problem of creating a model that describes a population of agents undergoing Darwinian Evolution, which takes into account the basic phenomena of this process. According to the principles of evolutionary biology, Evolution occurs if there is selection and adaptation of phenotypes, mutation of genotypes, presence of physical space. The evolution of a biological population is then described by a system of ordinary stochastic differential equations; the basic model of dynamics represents the trend of a population divided into different types, with relative frequency in a simplex. The law governing this dynamics is called Replicator Dynamics: the growth rate of type k is measured in terms of evolutionary advantage, with its own fitness compared to the average in the population. The replicator dynamics model turns into a stochastic process when we consider random mutations that can transform fractions of individuals into others. The two main forces of Evolution, selection and mutation, act on different layers: the environment acts on the phenotype, selecting the fittest, while the randomness of the mutations affects the genotype. This difference is underlined in the model, where each genotype express a phenotype, and fitness influences emerging traits, not explicitly encoded in genotypes. The presence of a potentially infinite space of available genomes makes sure that variants of individuals with characteristics never seen before can be generated. In conclusion, numerical simulations are provided for some applications of the model, such as a variation of Conway's Game of Lif

    A model for the evolution of reinforcement learning in fluctuating games

    Get PDF
    Many species are able to learn to associate behaviours with rewards as this gives fitness advantages in changing environments. Social interactions between population members may, however, require more cognitive abilities than simple trial-and-error learning, in particular the capacity to make accurate hypotheses about the material payoff consequences of alternative action combinations. It is unclear in this context whether natural selection necessarily favours individuals to use information about payoffs associated with nontried actions (hypothetical payoffs), as opposed to simple reinforcement of realized payoff. Here, we develop an evolutionary model in which individuals are genetically determined to use either trial-and-error learning or learning based on hypothetical reinforcements, and ask what is the evolutionarily stable learning rule under pairwise symmetric two-action stochastic repeated games played over the individual's lifetime. We analyse through stochastic approximation theory and simulations the learning dynamics on the behavioural timescale, and derive conditions where trial-and-error learning outcompetes hypothetical reinforcement learning on the evolutionary timescale. This occurs in particular under repeated cooperative interactions with the same partner. By contrast, we find that hypothetical reinforcement learners tend to be favoured under random interactions, but stable polymorphisms can also obtain where trial-and-error learners are maintained at a low frequency. We conclude that specific game structures can select for trial-and-error learning even in the absence of costs of cognition, which illustrates that cost-free increased cognition can be counterselected under social interactions

    Learning in Evolutionary Environments

    Get PDF
    The purpose of this work is to present a sort of short selective guide to an enormous and diverse literature on learning processes in economics. We argue that learning is an ubiquitous characteristic of most economic and social systems but it acquires even greater importance in explicitly evolutionary environments where: a) heterogeneous agents systematically display various forms of "bounded rationality"; b) there is a persistent appearance of novelties, both as exogenous shocks and as the result of technological, behavioural and organisational innovations by the agents themselves; c) markets (and other interaction arrangements) perform as selection mechanisms; d) aggregate regularities are primarily emergent properties stemming from out-of-equilibrium interactions. We present, by means of examples, the most important classes of learning models, trying to show their links and differences, and setting them against a sort of ideal framework of "what one would like to understand about learning...". We put a signifiphasis on learning models in their bare-bone formal structure, but we also refer to the (generally richer) non-formal theorising about the same objects. This allows us to provide an easier mapping of a wide and largely unexplored research agenda.Learning, Evolutionary Environments, Economic Theory, Rationality

    Meta-Stability of Interacting Adaptive Agents

    Get PDF
    The adaptive process can be considered as being driven by two fundamental forces: exploitation and exploration. While the explorative process may be deterministic, the resultant effect may be stochastic. Stochastic effects may also exist in the expoitative process. This thesis considers the effects of stochastic fluctuations inherent in the adaptive process on the behavioural dynamics of a population of interacting agents. It is hypothesied that in such systems, one or more attractors in the population space exist; and that transitions between these attractors can occur; either as a result of internal shocks (sampling fluctuations) or external shocks (environmental changes). It is further postulated that such transitions in the (microscopic) population space may be observable as phase transitions in the behaviour of macroscopic observables. A simple model of a stock market, driven by asexual reproduction (selection plus mutation) is put forward as a testbed. A statistical dynamics analysis of the behaviour of this market is then developed. Fixed points in the space of agent behaviours are located, and market dynamics are compared to the analytic predictions. Additionally, an analysis of the relative importance of internal shocks(sampling fluctuations) and external shocks( the stock dividend sequence) across varying population size is presented

    Dynamics of Macrosystems; Proceedings of a Workshop, September 3-7, 1984

    Get PDF
    There is an increasing awareness of the important and persuasive role that instability and random, chaotic motion play in the dynamics of macrosystems. Further research in the field should aim at providing useful tools, and therefore the motivation should come from important questions arising in specific macrosystems. Such systems include biochemical networks, genetic mechanisms, biological communities, neutral networks, cognitive processes and economic structures. This list may seem heterogeneous, but there are similarities between evolution in the different fields. It is not surprising that mathematical methods devised in one field can also be used to describe the dynamics of another. IIASA is attempting to make progress in this direction. With this aim in view this workshop was held at Laxenburg over the period 3-7 September 1984. These Proceedings cover a broad canvas, ranging from specific biological and economic problems to general aspects of dynamical systems and evolutionary theory

    Many-agent Reinforcement Learning

    Get PDF
    Multi-agent reinforcement learning (RL) solves the problem of how each agent should behave optimally in a stochastic environment in which multiple agents are learning simultaneously. It is an interdisciplinary domain with a long history that lies in the joint area of psychology, control theory, game theory, reinforcement learning, and deep learning. Following the remarkable success of the AlphaGO series in single-agent RL, 2019 was a booming year that witnessed significant advances in multi-agent RL techniques; impressive breakthroughs have been made on developing AIs that outperform humans on many challenging tasks, especially multi-player video games. Nonetheless, one of the key challenges of multi-agent RL techniques is the scalability; it is still non-trivial to design efficient learning algorithms that can solve tasks including far more than two agents (N2N \gg 2), which I name by \emph{many-agent reinforcement learning} (MARL\footnote{I use the world of ``MARL" to denote multi-agent reinforcement learning with a particular focus on the cases of many agents; otherwise, it is denoted as ``Multi-Agent RL" by default.}) problems. In this thesis, I contribute to tackling MARL problems from four aspects. Firstly, I offer a self-contained overview of multi-agent RL techniques from a game-theoretical perspective. This overview fills the research gap that most of the existing work either fails to cover the recent advances since 2010 or does not pay adequate attention to game theory, which I believe is the cornerstone to solving many-agent learning problems. Secondly, I develop a tractable policy evaluation algorithm -- αα\alpha^\alpha-Rank -- in many-agent systems. The critical advantage of αα\alpha^\alpha-Rank is that it can compute the solution concept of α\alpha-Rank tractably in multi-player general-sum games with no need to store the entire pay-off matrix. This is in contrast to classic solution concepts such as Nash equilibrium which is known to be PPADPPAD-hard in even two-player cases. αα\alpha^\alpha-Rank allows us, for the first time, to practically conduct large-scale multi-agent evaluations. Thirdly, I introduce a scalable policy learning algorithm -- mean-field MARL -- in many-agent systems. The mean-field MARL method takes advantage of the mean-field approximation from physics, and it is the first provably convergent algorithm that tries to break the curse of dimensionality for MARL tasks. With the proposed algorithm, I report the first result of solving the Ising model and multi-agent battle games through a MARL approach. Fourthly, I investigate the many-agent learning problem in open-ended meta-games (i.e., the game of a game in the policy space). Specifically, I focus on modelling the behavioural diversity in meta-games, and developing algorithms that guarantee to enlarge diversity during training. The proposed metric based on determinantal point processes serves as the first mathematically rigorous definition for diversity. Importantly, the diversity-aware learning algorithms beat the existing state-of-the-art game solvers in terms of exploitability by a large margin. On top of the algorithmic developments, I also contribute two real-world applications of MARL techniques. Specifically, I demonstrate the great potential of applying MARL to study the emergent population dynamics in nature, and model diverse and realistic interactions in autonomous driving. Both applications embody the prospect that MARL techniques could achieve huge impacts in the real physical world, outside of purely video games
    corecore