40 research outputs found

    New Design of PI Regulator Circuit Based on Three-Terminal Memristors

    Get PDF

    Designing energy-efficient sub-threshold logic circuits using equalization and non-volatile memory circuits using memristors

    Full text link
    The very large scale integration (VLSI) community has utilized aggressive complementary metal-oxide semiconductor (CMOS) technology scaling to meet the ever-increasing performance requirements of computing systems. However, as we enter the nanoscale regime, the prevalent process variation effects degrade the CMOS device reliability. Hence, it is increasingly essential to explore emerging technologies which are compatible with the conventional CMOS process for designing highly-dense memory/logic circuits. Memristor technology is being explored as a potential candidate in designing non-volatile memory arrays and logic circuits with high density, low latency and small energy consumption. In this thesis, we present the detailed functionality of multi-bit 1-Transistor 1-memRistor (1T1R) cell-based memory arrays. We present the performance and energy models for an individual 1T1R memory cell and the memory array as a whole. We have considered TiO2- and HfOx-based memristors, and for these technologies there is a sub-10% difference between energy and performance computed using our models and HSPICE simulations. Using a performance-driven design approach, the energy-optimized TiO2-based RRAM array consumes the least write energy (4.06 pJ/bit) and read energy (188 fJ/bit) when storing 3 bits/cell for 100 nsec write and 1 nsec read access times. Similarly, HfOx-based RRAM array consumes the least write energy (365 fJ/bit) and read energy (173 fJ/bit) when storing 3 bits/cell for 1 nsec write and 200 nsec read access times. On the logic side, we investigate the use of equalization techniques to improve the energy efficiency of digital sequential logic circuits in sub-threshold regime. We first propose the use of a variable threshold feedback equalizer circuit with combinational logic blocks to mitigate the timing errors in digital logic designed in sub-threshold regime. This mitigation of timing errors can be leveraged to reduce the dominant leakage energy by scaling supply voltage or decreasing the propagation delay. At the fixed supply voltage, we can decrease the propagation delay of the critical path in a combinational logic block using equalizer circuits and, correspondingly decrease the leakage energy consumption. For a 8-bit carry lookahead adder designed in UMC 130 nm process, the operating frequency can be increased by 22.87% (on average), while reducing the leakage energy by 22.6% (on average) in the sub-threshold regime. Overall, the feedback equalization technique provides up to 35.4% lower energy-delay product compared to the conventional non-equalized logic. We also propose a tunable adaptive feedback equalizer circuit that can be used with sequential digital logic to mitigate the process variation effects and reduce the dominant leakage energy component in sub-threshold digital logic circuits. For a 64-bit adder designed in 130 nm our proposed approach can reduce the normalized delay variation of the critical path delay from 16.1% to 11.4% while reducing the energy-delay product by 25.83% at minimum energy supply voltage. In addition, we present detailed energy-performance models of the adaptive feedback equalizer circuit. This work serves as a foundation for the design of robust, energy-efficient digital logic circuits in sub-threshold regime

    BOOLEAN AND BRAIN-INSPIRED COMPUTING USING SPIN-TRANSFER TORQUE DEVICES

    Get PDF
    Several completely new approaches (such as spintronic, carbon nanotube, graphene, TFETs, etc.) to information processing and data storage technologies are emerging to address the time frame beyond current Complementary Metal-Oxide-Semiconductor (CMOS) roadmap. The high speed magnetization switching of a nano-magnet due to current induced spin-transfer torque (STT) have been demonstrated in recent experiments. Such STT devices can be explored in compact, low power memory and logic design. In order to truly leverage STT devices based computing, researchers require a re-think of circuit, architecture, and computing model, since the STT devices are unlikely to be drop-in replacements for CMOS. The potential of STT devices based computing will be best realized by considering new computing models that are inherently suited to the characteristics of STT devices, and new applications that are enabled by their unique capabilities, thereby attaining performance that CMOS cannot achieve. The goal of this research is to conduct synergistic exploration in architecture, circuit and device levels for Boolean and brain-inspired computing using nanoscale STT devices. Specifically, we first show that the non-volatile STT devices can be used in designing configurable Boolean logic blocks. We propose a spin-memristor threshold logic (SMTL) gate design, where memristive cross-bar array is used to perform current mode summation of binary inputs and the low power current mode spintronic threshold device carries out the energy efficient threshold operation. Next, for brain-inspired computing, we have exploited different spin-transfer torque device structures that can implement the hard-limiting and soft-limiting artificial neuron transfer functions respectively. We apply such STT based neuron (or ‘spin-neuron’) in various neural network architectures, such as hierarchical temporal memory and feed-forward neural network, for performing “human-like” cognitive computing, which show more than two orders of lower energy consumption compared to state of the art CMOS implementation. Finally, we show the dynamics of injection locked Spin Hall Effect Spin-Torque Oscillator (SHE-STO) cluster can be exploited as a robust multi-dimensional distance metric for associative computing, image/ video analysis, etc. Our simulation results show that the proposed system architecture with injection locked SHE-STOs and the associated CMOS interface circuits can be suitable for robust and energy efficient associative computing and pattern matching

    Memristor-based design solutions for mitigating parametric variations in IoT applications

    Get PDF
    PhD ThesisRapid advancement of the internet of things (IoT) is predicated by two important factors of the electronic technology, namely device size and energy-efficiency. With smaller size comes the problem of process, voltage and temperature (PVT) variations of delays which are the key operational parameters of devices. Parametric variability is also an obstacle on the way to allowing devices to work in systems with unpredictable power sources, such as those powered by energy-harvesters. Designers tackle these problems holistically by developing new techniques such as asynchronous logic, where mechanisms such as matching delays are widely used to adapt to delay variations. To mitigate energy efficiency and power interruption issues the matching delays need to be ideally retained in a non-volatile storage. Meanwhile, a resistive memory called memristor becomes a promising component for power-restricted applications owing to its inherent non-volatility. While providing non-volatility, the use of memristor in delay matching incurs some power overheads. This creates the first challenge on the way of introducing memristors into IoT devices for the delay matching. Another important factor affecting the use of memristors in IoT devices is the dependence of the memristor value on temperature. For example, a memristance decoder used in the memristor-based components must be able to correct the read data without incurring significant overheads on the overall system. This creates the second challenge for overcoming the temperature effect in memristance decoding process. In this research, we propose methods for improving PVT tolerance and energy characteristics of IoT devices from the perspective of above two main challenges: (i) utilising memristor to enhance the energy efficiency of the delay element (DE), and (ii) improving the temperature awareness and energy robustness of the memristance decoder. For memristor-based delay element (MemDE), we applied a memristor between two inverters to vary the path resistance, which determines the RC delay. This allows power saving due to the low number of switching components and the absence of external delay storage. We also investigate a solution for avoiding the unintended tuning (UT) and a timing model to estimate the proper pulse width for memristance tuning. The simulation results based on UMC 180nm technology and VTEAM model show the MemDE can provide the delay between 0.55ns and 1.44ns which is compatible to the 4-bit multiplexerbased delay element (MuxDE) in the same technology while consuming thirteen times less power. The key contribution within (i) is the development of low-power MemDE to mitigate the timing mismatch caused by PVT variations. To estimate the temperature effect on memristance, we develop an empirical temperature model which fits both titanium dioxide and silver chalcogenide memristors. The temperature experiments are conducted using the latter device, and the results confirm the validity of the proposed model with the accuracy R-squared >88%. The memristance decoder is designed to deliver two key advantages. Firstly, the temperature model is integrated into the VTEAM model to enable the temperature compensation. Secondly, it supports resolution scalability to match the energy budget. The simulation results of the 2-bit decoder based on UMC 65nm technology show the energy can be varied between 49fJ and 98fJ. This is the second major contribution to address the challenge (ii). This thesis gives future research directions into an in-depth study of the memristive electronics as a variation-robust energy-efficient design paradigm and its impact on developing future IoT applications.sponsored by the Royal Thai Governmen

    On the Application of PSpice for Localised Cloud Security

    Get PDF
    The work reported in this thesis commenced with a review of methods for creating random binary sequences for encoding data locally by the client before storing in the Cloud. The first method reviewed investigated evolutionary computing software which generated noise-producing functions from natural noise, a highly-speculative novel idea since noise is stochastic. Nevertheless, a function was created which generated noise to seed chaos oscillators which produced random binary sequences and this research led to a circuit-based one-time pad key chaos encoder for encrypting data. Circuit-based delay chaos oscillators, initialised with sampled electronic noise, were simulated in a linear circuit simulator called PSpice. Many simulation problems were encountered because of the nonlinear nature of chaos but were solved by creating new simulation parts, tools and simulation paradigms. Simulation data from a range of chaos sources was exported and analysed using Lyapunov analysis and identified two sources which produced one-time pad sequences with maximum entropy. This led to an encoding system which generated unlimited, infinitely-long period, unique random one-time pad encryption keys for plaintext data length matching. The keys were studied for maximum entropy and passed a suite of stringent internationally-accepted statistical tests for randomness. A prototype containing two delay chaos sources initialised by electronic noise was produced on a double-sided printed circuit board and produced more than 200 Mbits of OTPs. According to Vladimir Kotelnikov in 1941 and Claude Shannon in 1945, one-time pad sequences are theoretically-perfect and unbreakable, provided specific rules are adhered to. Two other techniques for generating random binary sequences were researched; a new circuit element, memristance was incorporated in a Chua chaos oscillator, and a fractional-order Lorenz chaos system with order less than three. Quantum computing will present many problems to cryptographic system security when existing systems are upgraded in the near future. The only existing encoding system that will resist cryptanalysis by this system is the unconditionally-secure one-time pad encryption

    Artificial neural networks and their applications to intelligent fault diagnosis of power transmission lines

    Get PDF
    Over the past thirty years, the idea of computing based on models inspired by human brains and biological neural networks emerged. Artificial neural networks play an important role in the field of machine learning and hold the key to the success of performing many intelligent tasks by machines. They are used in various applications such as pattern recognition, data classification, stock market prediction, aerospace, weather forecasting, control systems, intelligent automation, robotics, and healthcare. Their architectures generally consist of an input layer, multiple hidden layers, and one output layer. They can be implemented on software or hardware. Nowadays, various structures with various names exist for artificial neural networks, each of which has its own particular applications. Those used types in this study include feedforward neural networks, convolutional neural networks, and general regression neural networks. Increasing the number of layers in artificial neural networks as needed for large datasets, implies increased computational expenses. Therefore, besides these basic structures in deep learning, some advanced techniques are proposed to overcome the drawbacks of original structures in deep learning such as transfer learning, federated learning, and reinforcement learning. Furthermore, implementing artificial neural networks in hardware gives scientists and engineers the chance to perform high-dimensional and big data-related tasks because it removes the constraints of memory access time defined as the von Neuman bottleneck. Accordingly, analog and digital circuits are used for artificial neural network implementations without using general-purpose CPUs. In this study, the problem of fault detection, identification, and location estimation of transmission lines is studied and various deep learning approaches are implemented and designed as solutions. This research work focuses on the transmission lines’ datasets, their faults, and the importance of identification, detection, and location estimation of them. It also includes a comprehensive review of the previous studies to perform these three tasks. The application of various artificial neural networks such as feedforward neural networks, convolutional neural networks, and general regression neural networks for identification, detection, and location estimation of transmission line datasets are also discussed in this study. Some advanced methods based on artificial neural networks are taken into account in this thesis such as the transfer learning technique. These methodologies are designed and applied on transmission line datasets to enable the scientist and engineers with using fewer data points for the training purpose and wasting less time on the training step. This work also proposes a transfer learning-based technique for distinguishing faulty and non-faulty insulators in transmission line images. Besides, an effective design for an activation function of the artificial neural networks is proposed in this thesis. Using hyperbolic tangent as an activation function in artificial neural networks has several benefits including inclusiveness and high accuracy

    Smart Embedded Systems for Biomedical Applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Enhanced modeling methodology for system-level electrostatic discharge simulation

    Get PDF
    To enable accurate system-level electrostatic discharge (ESD) simulation, models for the equipment under test, the ESD source, and the environment are required. This work presents advanced modeling methods for the ESD source, the victim IC, and other on-board components, most notably the transient voltage suppressor. Kernel regression is used to generate an enhanced quasistatic I-V model of an IC pin, which reflects its dependency on the circuit board’s power delivery network. S-parameter measurements enable the development of a model for an IEC 61000-4-2 ESD source that comprehends the coupling among the ground straps and the ground plane. The transient-voltage-suppressor device is modeled using a behavioral snapback model that shows better convergence in circuit simulation than piece-wise models. Furthermore, ESD-induced soft failures are often caused by the noise coupled between the IC package traces. To help identify this type of failure, a hybrid electromagnetic and circuit simulation approach is demonstrated

    Enhanced Hardware Security Using Charge-Based Emerging Device Technology

    Get PDF
    The emergence of hardware Trojans has largely reshaped the traditional view that the hardware layer can be blindly trusted. Hardware Trojans, which are often in the form of maliciously inserted circuitry, may impact the original design by data leakage or circuit malfunction. Hardware counterfeiting and IP piracy are another two serious issues costing the US economy more than $200 billion annually. A large amount of research and experimentation has been carried out on the design of these primitives based on the currently prevailing CMOS technology. However, the security provided by these primitives comes at the cost of large overheads mostly in terms of area and power consumption. The development of emerging technologies provides hardware security researchers with opportunities to utilize some of the otherwise unusable properties of emerging technologies in security applications. In this dissertation, we will include the security consideration in the overall performance measurements to fully compare the emerging devices with CMOS technology. The first approach is to leverage two emerging devices (Silicon NanoWire and Graphene SymFET) for hardware security applications. Experimental results indicate that emerging device based solutions can provide high level circuit protection with relatively lower performance overhead compared to conventional CMOS counterpart. The second topic is to construct an energy-efficient DPA-resilient block cipher with ultra low-power Tunnel FET. Current-mode logic is adopted as a circuit-level solution to countermeasure differential power analysis attack, which is mostly used in the cryptographic system. The third investigation targets on potential security vulnerability of foundry insider\u27s attack. Split manufacturing is adopted for the protection on radio-frequency (RF) circuit design

    Scanning tunnelling microscopy of bilayer manganites

    Get PDF
    This thesis describes experimental work carried out on bilayer manganites with the general composition R_{2-2x}A_{1+2x}Mn_2O_7, where R is a trivalent rare earth cation and A is a divalent alkaline-earth cation. Experiments have been carried out primarily using Scanning Tunnelling Microscopy (STM) and Spectroscopy (STS); bulk electrical transport, MPMS and LEED measurements have also been made. The primary results are obtained from single crystal samples of PrSr_2Mn_2O_7. This compound provides a surface suitable for STM study when cleaved at low temperature in ultra-high vacuum: atomic resolution can be readily achieved. The expected square lattice is observed, together with a larger scale surface modulation which is not presently explained. In some areas of the PrSr_2Mn_2O_7 surface a population of adatoms and surface vacancies is observed. STS data indicate that adatoms carry a negative charge compared to the rest of the surface, and vacancies a positive charge: the adatoms and vacancies are interpreted as oxygen adatoms and oxygen vacancies. A detailed study is made of the oxygen adatoms and vacancies: this is believed to be the firrst such study made on a manganite surface. Oxygen adatoms on the PrSr_2Mn_2O_7 surface are found to be mobile: hopping and adatom-vacancy recombination are observed. Additional results are reported on the layered manganite compound La_{2-2x}Sr_{1+2x}Mn_2O_7 at a range of cation doping x. For the LaSr_2Mn_2O_7 compound (x = 0.5) spectroscopic variation has been identi_ed in a variable-temperature STS survey. This indicates the coexistence of two surface electronic phases, possibly the charge ordered and antiferromagnetic phases
    corecore