147 research outputs found

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants

    Code combination for blind channel estimation in general MIMO-STBC systems

    Get PDF
    The problem of blind channel estimation under space-time block coded (STBC) transmissions is addressed. Firstly, a blind channel estimation criterion that generalizes previous works is proposed. The technique is solely based on second-order statistics (SOS) and if the channel is identifiable, the estimate is obtained as the main eigenvector of a generalized eigenvalue problem (GEV). Secondly, a new transmission technique is proposed to solve the indeterminacies associated to the blind channel estimation problem. The technique is based on the combination of different STBCs, and it can be reduced to a nonredundant precoding consisting in the rotation or permutation of the transmit antennas. Unlike other previous approaches, the proposed technique does not imply a penalty in the transmission rate or capacity of the STBC system, while it is able to avoid the ambiguities in many practical cases, which is illustrated by means of some simulation examples

    Improved Spatial Modulation Techniques for Wireless Communications

    Get PDF
    Transmission and reception methods with multiple antennas have been demonstrated to be very useful in providing high data rates and improving reliability in wireless communications. In particular, spatial modulation (SM) has recently emerged as an attractive transmission method for multiple-antennas systems due to its better energy efficiency and lower system complexity. This thesis is concerned with developing transmission techniques to improve the spectral efficiency of SM where antenna/subcarrier index involves in conveying information bits. In the first part of the thesis, new transmission techniques are developed for SM over frequency-flat fading channels. The first proposed scheme is based on a high-rate space-time block code instead of using the classical Alamouti STBC, which helps to increase the spectral efficiency and achieve a transmit diversity order of two. A simplified maximum likelihood detection is also developed for this proposed scheme. Analysis of coding gains and simulation results demonstrate that the proposed scheme outperforms previously-proposed SM schemes at high data transmission rates. Then, a new space-shift keying (SSK) modulation scheme is proposed which requires a smaller number of transmit antennas than that required in the bi-space shift keying (BiSSK). Such a proposed SSK-based scheme is obtained by multiplexing two in-phase and quadrature generalized SSK streams and optimizing the carrier signals transmitted by the activated antennas. Performance of the proposed scheme is compared with other SSK-based schemes via minimum Euclidean distance analysis and computer simulation. The third scheme proposed in this part is an improved version of quadrature SM (QSM). The main feature of this proposed scheme is to send a second constellation symbol over the in-phase and quadrature antenna dimensions. A significant performance advantage of the proposed scheme is realized at the cost of a slight increase in the number of radio-frequency (RF) chains. Performance comparisons with the most recent SM schemes confirm the advantage of the proposed scheme. The last contribution of the first part is an optimal constellation design for QSM to minimize the average probability of error. It is shown that, the error performance of QSM not only depends on the Euclidean distances between the amplitude phase modulation (APM) symbols and the energies of APM symbols, but also on the in-phase and quadrature components of the QSM symbols. The analysis of the union bound of the average error probability reveals that at a very large number of transmit antennas, the optimal constellations for QSM converge to a quadrature phase shift keying (QPSK) constellation. Simulation results demonstrate the performance superiority of the obtained constellations over other modulation schemes. In the second part of the thesis, the applications of SM in frequency-selective fading channels are studied. First, a new transmission scheme that employs SM for each group of subcarriers in orthogonal frequency-division multiplexing (OFDM) transmission is investigated. Specifically, OFDM symbols in each group are passed through a precoder to maximize the diversity and coding gains, while SM is applied in each group to convey more information bits by antenna indices. Performance analysis and simulation results are carried out to demonstrate the superiority of the proposed scheme over a previously-proposed combination of SM and OFDM. Next, the performance of OFDM based on index modulation and a flexible version of OFDM, knows as OFDM with multiple constellations, is compared for both case of "no precoding'' and "with precoding'' of data symbols. It is shown that the precoded OFDM with multiple constellations outperforms precoded-IM based OFDM systems over frequency-selective fading channels. The last part of the thesis investigates a multiuser downlink transmission system based on in-phase and quadrature space-shift keying modulation and precoding to reduce the minimum number of transmit antennas while keeping the complexity of the receiver low. In addition to the maximum likelihood (ML) detection, the low complexity zero forcing (ZF) receiver is also studied. Theoretical upper bounds for the error probabilities of both ML and ZF receivers are obtained and corroborated with simulation results

    MIMO signal processing in offset-QAM based filter bank multicarrier systems

    Get PDF
    Next-generation communication systems have to comply with very strict requirements for increased flexibility in heterogeneous environments, high spectral efficiency, and agility of carrier aggregation. This fact motivates research in advanced multicarrier modulation (MCM) schemes, such as filter bank-based multicarrier (FBMC) modulation. This paper focuses on the offset quadrature amplitude modulation (OQAM)-based FBMC variant, known as FBMC/OQAM, which presents outstanding spectral efficiency and confinement in a number of channels and applications. Its special nature, however, generates a number of new signal processing challenges that are not present in other MCM schemes, notably, in orthogonal-frequency-division multiplexing (OFDM). In multiple-input multiple-output (MIMO) architectures, which are expected to play a primary role in future communication systems, these challenges are intensified, creating new interesting research problems and calling for new ideas and methods that are adapted to the particularities of the MIMO-FBMC/OQAM system. The goal of this paper is to focus on these signal processing problems and provide a concise yet comprehensive overview of the recent advances in this area. Open problems and associated directions for future research are also discussed.Peer ReviewedPostprint (author's final draft

    Técnicas de pré-codificação para sistemas multicelulares coordenados

    Get PDF
    Doutoramento em TelecomunicaçõesCoordenação Multicélula é um tópico de investigação em rápido crescimento e uma solução promissora para controlar a interferência entre células em sistemas celulares, melhorando a equidade do sistema e aumentando a sua capacidade. Esta tecnologia já está em estudo no LTEAdvanced sob o conceito de coordenação multiponto (COMP). Existem várias abordagens sobre coordenação multicélula, dependendo da quantidade e do tipo de informação partilhada pelas estações base, através da rede de suporte (backhaul network), e do local onde essa informação é processada, i.e., numa unidade de processamento central ou de uma forma distribuída em cada estação base. Nesta tese, são propostas técnicas de pré-codificação e alocação de potência considerando várias estratégias: centralizada, todo o processamento é feito na unidade de processamento central; semidistribuída, neste caso apenas parte do processamento é executado na unidade de processamento central, nomeadamente a potência alocada a cada utilizador servido por cada estação base; e distribuída em que o processamento é feito localmente em cada estação base. Os esquemas propostos são projectados em duas fases: primeiro são propostas soluções de pré-codificação para mitigar ou eliminar a interferência entre células, de seguida o sistema é melhorado através do desenvolvimento de vários esquemas de alocação de potência. São propostas três esquemas de alocação de potência centralizada condicionada a cada estação base e com diferentes relações entre desempenho e complexidade. São também derivados esquemas de alocação distribuídos, assumindo que um sistema multicelular pode ser visto como a sobreposição de vários sistemas com uma única célula. Com base neste conceito foi definido uma taxa de erro média virtual para cada um desses sistemas de célula única que compõem o sistema multicelular, permitindo assim projectar esquemas de alocação de potência completamente distribuídos. Todos os esquemas propostos foram avaliados em cenários realistas, bastante próximos dos considerados no LTE. Os resultados mostram que os esquemas propostos são eficientes a remover a interferência entre células e que o desempenho das técnicas de alocação de potência propostas é claramente superior ao caso de não alocação de potência. O desempenho dos sistemas completamente distribuídos é inferior aos baseados num processamento centralizado, mas em contrapartida podem ser usados em sistemas em que a rede de suporte não permita a troca de grandes quantidades de informação.Multicell coordination is a promising solution for cellular wireless systems to mitigate inter-cell interference, improving system fairness and increasing capacity and thus is already under study in LTE-A under the coordinated multipoint (CoMP) concept. There are several coordinated transmission approaches depending on the amount of information shared by the transmitters through the backhaul network and where the processing takes place i.e. in a central processing unit or in a distributed way on each base station. In this thesis, we propose joint precoding and power allocation techniques considering different strategies: Full-centralized, where all the processing takes place at the central unit; Semi-distributed, in this case only some process related with power allocation is done at the central unit; and Fulldistributed, where all the processing is done locally at each base station. The methods are designed in two phases: first the inter-cell interference is removed by applying a set of centralized or distributed precoding vectors; then the system is further optimized by centralized or distributed power allocation schemes. Three centralized power allocation algorithms with per-BS power constraint and different complexity tradeoffs are proposed. Also distributed power allocation schemes are proposed by considering the multicell system as superposition of single cell systems, where we define the average virtual bit error rate (BER) of interference-free single cell system, allowing us to compute the power allocation coefficients in a distributed manner at each BS. All proposed schemes are evaluated in realistic scenarios considering LTE specifications. The numerical evaluations show that the proposed schemes are efficient in removing inter-cell interference and improve system performance comparing to equal power allocation. Furthermore, fulldistributed schemes can be used when the amounts of information to be exchanged over the backhaul is restricted, although system performance is slightly degraded from semi-distributed and full-centralized schemes, but the complexity is considerably lower. Besides that for high degrees of freedom distributed schemes show similar behaviour to centralized ones
    corecore