33,860 research outputs found

    Finite-time Stability, Dissipativity and Passivity Analysis of Discrete-time Neural Networks Time-varying Delays

    Get PDF
    The neural network time-varying delay was described as the dynamic properties of a neural cell, including neural functional and neural delay differential equations. The differential expression explains the derivative term of current and past state. The objective of this paper obtained the neural network time-varying delay. A delay-dependent condition is provided to ensure the considered discrete-time neural networks with time-varying delays to be finite-time stability, dissipativity, and passivity. This paper using a new Lyapunov-Krasovskii functional as well as the free-weighting matrix approach and a linear matrix inequality analysis (LMI) technique constructing to a novel sufficient criterion on finite-time stability, dissipativity, and passivity of the discrete-time neural networks with time-varying delays for improving. We propose sufficient conditions for discrete-time neural networks with time-varying delays. An effective LMI approach derives by base the appropriate type of Lyapunov functional. Finally, we present the effectiveness of novel criteria of finite-time stability, dissipativity, and passivity condition of discrete-time neural networks with time-varying delays in the form of linear matrix inequality (LMI)

    New delay-dependent stability criteria for recurrent neural networks with time-varying delays

    Get PDF
    Dimirovski, Georgi M. (Dogus Author)This work is concerned with the delay-dependentstability problem for recurrent neural networks with time-varying delays. A new improved delay-dependent stability criterion expressed in terms of linear matrix inequalities is derived by constructing a dedicated Lyapunov-Krasovskii functional via utilizing Wirtinger inequality and convex combination approach. Moreover, a further improved delay-dependent stability criterion is established by means of a new partitioning method for bounding conditions on the activation function and certain new activation function conditions presented. Finally, the application of these novel results to an illustrative example from the literature has been investigated and their effectiveness is shown via comparison with the existing recent ones

    Improved Delay-Dependent Stability Analysis for Neural Networks with Interval Time-Varying Delays

    Get PDF
    The problem of delay-dependent asymptotic stability analysis for neural networks with interval time-varying delays is considered based on the delay-partitioning method. Some less conservative stability criteria are established in terms of linear matrix inequalities (LMIs) by constructing a new Lyapunov-Krasovskii functional (LKF) in each subinterval and combining with reciprocally convex approach. Moreover, our criteria depend on both the upper and lower bounds on time-varying delay and its derivative, which is different from some existing ones. Finally, a numerical example is given to show the improved stability region of the proposed results

    Delay-Dependent Stability Analysis for Recurrent Neural Networks with Time-Varying Delays

    Get PDF
    This paper concerns the problem of delay-dependent stability criteria for recurrent neural networks with time varying delays. By taking more information of states and activation functions as augmented vectors, a new class of the Lyapunov functional is proposed. Then, some less conservative stability criteria are obtained in terms of linear matrix inequalities (LMIs). Finally, two numerical examples are given to illustrate the effectiveness of the proposed method

    A new approach to stability analysis of neural networks with time-varying delay via novel Lyapunov-Krasovskii functional *

    Get PDF
    In this paper, new delay-dependent stability criteria for asymptotic stability of neural networks with time-varying delays are derived. The stability conditions are represented in terms of linear matrix inequalities (LMIs) by constructing new Lyapunov-Krasovskii functional. The proposed functional has an augmented quadratic form with states as well as the nonlinear function to consider the sector and the slope constraints. The less conservativeness of the proposed stability criteria can be guaranteed by using convex properties of the nonlinear function which satisfies the sector and slope bound. Numerical examples are presented to show the effectiveness of the proposed method

    Robust synchronization of an array of coupled stochastic discrete-time delayed neural networks

    Get PDF
    Copyright [2008] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper is concerned with the robust synchronization problem for an array of coupled stochastic discrete-time neural networks with time-varying delay. The individual neural network is subject to parameter uncertainty, stochastic disturbance, and time-varying delay, where the norm-bounded parameter uncertainties exist in both the state and weight matrices, the stochastic disturbance is in the form of a scalar Wiener process, and the time delay enters into the activation function. For the array of coupled neural networks, the constant coupling and delayed coupling are simultaneously considered. We aim to establish easy-to-verify conditions under which the addressed neural networks are synchronized. By using the Kronecker product as an effective tool, a linear matrix inequality (LMI) approach is developed to derive several sufficient criteria ensuring the coupled delayed neural networks to be globally, robustly, exponentially synchronized in the mean square. The LMI-based conditions obtained are dependent not only on the lower bound but also on the upper bound of the time-varying delay, and can be solved efficiently via the Matlab LMI Toolbox. Two numerical examples are given to demonstrate the usefulness of the proposed synchronization scheme

    State estimation for discrete-time neural networks with Markov-mode-dependent lower and upper bounds on the distributed delays

    Get PDF
    Copyright @ 2012 Springer VerlagThis paper is concerned with the state estimation problem for a new class of discrete-time neural networks with Markovian jumping parameters and mixed time-delays. The parameters of the neural networks under consideration switch over time subject to a Markov chain. The networks involve both the discrete-time-varying delay and the mode-dependent distributed time-delay characterized by the upper and lower boundaries dependent on the Markov chain. By constructing novel Lyapunov-Krasovskii functionals, sufficient conditions are firstly established to guarantee the exponential stability in mean square for the addressed discrete-time neural networks with Markovian jumping parameters and mixed time-delays. Then, the state estimation problem is coped with for the same neural network where the goal is to design a desired state estimator such that the estimation error approaches zero exponentially in mean square. The derived conditions for both the stability and the existence of desired estimators are expressed in the form of matrix inequalities that can be solved by the semi-definite programme method. A numerical simulation example is exploited to demonstrate the usefulness of the main results obtained.This work was supported in part by the Royal Society of the U.K., the National Natural Science Foundation of China under Grants 60774073 and 61074129, and the Natural Science Foundation of Jiangsu Province of China under Grant BK2010313

    Sparse model identification using a forward orthogonal regression algorithm aided by mutual information

    Get PDF
    A sparse representation, with satisfactory approximation accuracy, is usually desirable in any nonlinear system identification and signal processing problem. A new forward orthogonal regression algorithm, with mutual information interference, is proposed for sparse model selection and parameter estimation. The new algorithm can be used to construct parsimonious linear-in-the-parameters models

    State estimation for coupled uncertain stochastic networks with missing measurements and time-varying delays: The discrete-time case

    Get PDF
    Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper is concerned with the problem of state estimation for a class of discrete-time coupled uncertain stochastic complex networks with missing measurements and time-varying delay. The parameter uncertainties are assumed to be norm-bounded and enter into both the network state and the network output. The stochastic Brownian motions affect not only the coupling term of the network but also the overall network dynamics. The nonlinear terms that satisfy the usual Lipschitz conditions exist in both the state and measurement equations. Through available output measurements described by a binary switching sequence that obeys a conditional probability distribution, we aim to design a state estimator to estimate the network states such that, for all admissible parameter uncertainties and time-varying delays, the dynamics of the estimation error is guaranteed to be globally exponentially stable in the mean square. By employing the Lyapunov functional method combined with the stochastic analysis approach, several delay-dependent criteria are established that ensure the existence of the desired estimator gains, and then the explicit expression of such estimator gains is characterized in terms of the solution to certain linear matrix inequalities (LMIs). Two numerical examples are exploited to illustrate the effectiveness of the proposed estimator design schemes
    corecore