690 research outputs found

    Integrated Circuits for Programming Flash Memories in Portable Applications

    Get PDF
    Smart devices such as smart grids, smart home devices, etc. are infrastructure systems that connect the world around us more than before. These devices can communicate with each other and help us manage our environment. This concept is called the Internet of Things (IoT). Not many smart nodes exist that are both low-power and programmable. Floating-gate (FG) transistors could be used to create adaptive sensor nodes by providing programmable bias currents. FG transistors are mostly used in digital applications like Flash memories. However, FG transistors can be used in analog applications, too. Unfortunately, due to the expensive infrastructure required for programming these transistors, they have not been economical to be used in portable applications. In this work, we present low-power approaches to programming FG transistors which make them a good candidate to be employed in future wireless sensor nodes and portable systems. First, we focus on the design of low-power circuits which can be used in programming the FG transistors such as high-voltage charge pumps, low-drop-out regulators, and voltage reference cells. Then, to achieve the goal of reducing the power consumption in programmable sensor nodes and reducing the programming infrastructure, we present a method to program FG transistors using negative voltages. We also present charge-pump structures to generate the necessary negative voltages for programming in this new configuration

    A sub-1 V, 26 μw, low-output-impedance CMOS bandgap reference with a low dropout or source follower mode

    Get PDF
    We present a low-power bandgap reference (BGR), functional from sub-1 V to 5 V supply voltage with either a low dropout (LDO) regulator or source follower (SF) output stage, denoted as the LDO or SF mode, in a 0.5-μm standard digital CMOS process with V tn≈ 0.6 V and |V tp| ≈ 0.7 V at 27 °C. Both modes operate at sub-1 V under zero load with a power consumption of around 26 μW. At 1 V (1.1 V) supply, the LDO (SF) mode provides an output current up to 1.1 mA (0.35 mA), a load regulation of ±8.5 mV/mA (±33 mV/mA) with approximately 10 μ s transient, a line regulation of ±4.2 mV/V (±50μV/V), and a temperature compensated reference voltage of 0.228 V (0.235 V) with a temperature coefficient around 34 ppm/° C from -20°C to 120 °C. At 1.5 V supply, the LDO (SF) mode can further drive up to 9.6 mA (3.2 mA) before the reference voltage falls to 90% of its nominal value. Such low-supply-voltage and high-current-driving BGR in standard digital CMOS processes is highly useful in portable and switching applications. © 2010 IEEE.published_or_final_versio

    Design of Analog CMOS Circuits for Batteryless Implantable Telemetry Systems

    Get PDF
    A wireless biomedical telemetry system is a device that collects biomedical signal measurements and transmits data through wireless RF communication. Testing medical treatments often involves experimentation on small laboratory animals, such as genetically modified mice and rats. Using batteries as a power source results in many practical issues, such as increased size of the implant and limited operating lifetime. Wireless power harvesting for implantable biomedical devices removes the need for batteries integrated into the implant. This will reduce device size and remove the need for surgical replacement due to battery depletion. Resonant inductive coupling achieves wireless power transfer in a manner modelled by a step down transformer. With this methodology, power harvesting for an implantable device is realized with the use of a large primary coil external to the subject, and a smaller secondary coil integrated into the implant. The signal received from the secondary coil must be regulated to provide a stable direct current (DC) power supply, which will be used to power the electronics in the implantable device. The focus of this work is on development of an electronic front-end for wireless powering of an implantable biomedical device. The energy harvesting front-end circuit is comprised of a rectifier, LDO regulator, and a temperature insensitive voltage reference. Physical design of the front-end circuit is developed in 0.13um CMOS technology with careful attention to analog layout issues. Post-layout simulation results are presented for each sub-block as well as the full front-end structure. The LDO regulator operates with supply voltages in the range of 1V to 1.5V with quiescent current of 10.5uA The complete power receiver front-end has a power conversion efficiency of up to 29%

    Bandgap Reference Design at the 14-Nanometer FinFET Node

    Get PDF
    As supply voltages continue to decrease, it becomes harder to ensure that the voltage drop across a diode-connected BJT is sufficient to conduct current without sacrificing die area. One such solution to this potential problem is the diode-connected MOSFET operating in weak inversion. In addition to conducting appreciable current at voltages significantly lower than the power supply, the diode-connected MOSFET reduces the total area for the bandgap implementation. Reference voltage variations across Monte Carlo perturbations are more pronounced as the variation of process parameters are exponentially affected in subthreshold conduction. In order for this proposed solution to be feasible, a design methodology was introduced to mitigate the effects of process variation. A 14 nm bandgap reference was created and simulated across Monte Carlo perturbations for 100 runs at nominal supply voltage and 10% variation of the power supply in either direction. The best case reference voltage was found and used to verify the proposed resistive network solution. The average temperature coefficient was measured to be 66.46 ppm/◦C and the voltage adjustment range was found to be 204.1 mV. The two FinFET subthreshold diodes consume approximately 2.8% of the area of the BJT diode equivalent. Utilizing an appropriate process control technique, subthreshold bandgap references have the potential to overtake traditional BJT-based bandgap architectures in low-power, limited-area applications

    Analyses and design strategies for fundamental enabling building blocks: Dynamic comparators, voltage references and on-die temperature sensors

    Get PDF
    Dynamic comparators and voltage references are among the most widely used fundamental building blocks for various types of circuits and systems, such as data converters, PLLs, switching regulators, memories, and CPUs. As thermal constraints quickly emerged as a dominant performance limiter, on-die temperature sensors will be critical to the reliable operation of future integrated circuits. This dissertation investigates characteristics of these three enabling circuits and design strategies for improving their performances. One of the most critical specifications of a dynamic comparator is its input referred offset voltage, which is pivotal to achieving overall system performance requirements of many mixed-signal circuits and systems. Unlike offset voltages in other circuits such as amplifiers, the offset voltage in a dynamic comparator is extremely challenging to analyze and predict analytically due to its dependence on transient response and due to internal positive feedback and time-varying operating points in the comparator. In this work, a novel balanced method is proposed to facilitate the evaluation of time-varying operating points of transistors in a dynamic comparator. Two types of offsets are studied in the model: (1) static offset voltage caused by mismatches in mobilities, transistor sizes, and threshold voltages, and (2) dynamic offset voltage caused by mismatches in parasitic capacitors or loading capacitors. To validate the proposed method, dynamic comparators in two prevalent topologies are implemented in 0.25 μm and 40 nm CMOS technologies. Agreement between predicted results and simulated results verifies the effectiveness of the proposed method. The new method and the analytical models enable designers to identify the most dominant contributors to offset and to optimize the dynamic comparators\u27 performances. As an illustrating example, the Lewis-Gray dynamic comparator was analyzed using the balanced method and redesigned to minimize its offset voltage. Simulation results show that the offset voltage was easily reduced by 41% while maintaining the same silicon area. A bandgap voltage reference is one of the core functional blocks in both analog and digital systems. Despite the reported improvements in performance of voltage references, little attention has been focused on theoretical characterizations of non-ideal effects on the value of the output voltage, on the inflection point location and on the curvature of the reference voltage. In this work, a systematic approach is proposed to analytically determine the effects of two non-ideal elements: the temperature dependent gain-determining resistors and the amplifier offset voltage. The effectiveness of the analytical models is validated by comparing analytical results against Spectre simulation results. Research on on-die temperature sensor design has received rapidly increasing attention since component and power density induced thermal stress has become a critical factor in the reliable operation of integrated circuits. For effective power and thermal management of future multi-core systems, hundreds of sensors with sufficient accuracy, small area and low power are required on a single chip. This work introduces a new family of highly linear on chip temperature sensors. The proposed family of temperature sensors expresses CMOS threshold voltage as an output. The sensor output is independent of power supply voltage and independent of mobility values. It can achieve very high temperature linearity, with maximum nonlinearity around +/- 0.05oC over a temperature range of -20oC to 100oC. A sizing strategy based on combined analytical analysis and numerical optimization has been presented. Following this method, three circuits A, B and C have been designed in standard 0.18 ym CMOS technology, all achieving excellent linearity as demonstrated by Cadence Spectre simulations. Circuits B and C are the modified versions of circuit A, and have improved performance at the worst corner-low voltage supply and high threshold voltage corner. Finally, a direct temperature-to-digital converter architecture is proposed as a master-slave hybrid temperature-to-digital converter. It does not require any traditional constant reference voltage or reference current, it does not attempt to make any node voltage or branch current constant or precisely linear to temperature, yet it generates a digital output code that is very linear with temperature

    Curvature-compensated BiCMOS bandgap with 1-V supply voltage

    Full text link

    Fully Integrated Voltage Reference Circuits

    Get PDF
    (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2014(PhD) -- İstanbul Technical University, Institute of Science and Technology, 2014Gerilim referans devreleri, elektriksel sistemlerde diğer alt blokların çalışmaları için kararlı bir çalışma noktası üretmeleri sebebiyle veri dönüştürücüler (ADC - DAC), frekans sentezleyiciler, DC-DC ve AC-DC dönüştürücüler ve lineer regülatörler gibi pek çok elektriksel sistemin en temel yapı bloklarındandır. İdeal olarak, üretilen bu referans noktası, sıcaklık, üretim süreçleri, besleme gerilim degişimleri ve yükleme etkileri gibi çalışma koşullarından etkilenmemelidir. Bir referans devresinin doğruluğu bahsedilen çalışma koşullarının etkisiyle mutlak değerinden ne kadar saptığı olarak tanımlanır. Modern haberleşme sistemleri ve tüketici ürünlerindeki gelişmeler ile birlikte yüksek entegrasyon ve doğruluklu sistemlere olan talep artmıştır. Tümdevre sistemlerinde, alt blokların çalışma noktalarını belirlemesi nedeniyle özellikle referans devrelerinin performansları bütün sistemin performansının belirlenmesinde önemli rol oynamaktadır. Dolayısıyla yüksek performanslı sistemlere olan talep, bu performansların elde edilmesi için kullanılan düşük geometrili üretim teknolojilerine uygun, yani giderek azalan besleme gerilimleri ile çalışabilecek yüksek doğruluklu referans devrelerine olan talebi de arttırmıştır. Bu nedenle bu çalışmada gerilim referans devre topolojilerine odaklanılmıştır. Bu doğrultuda, öncelikle yüksek doğruluklu, düşük gürültülü gerilim refereans devre topolojileri üzerinde çalışılarak 0.35 um CMOS teknoljisinde farklı tasarımlar yapılmıştır. Bu aşamada temel hedef, yüksek dogrulukluk olarak belirenmiş ve yapılan tasarımlarda, üretim sonrası ayarlamalardan sonra sıcaklık katsayısı 3 ppm/C olabilecek devreler tasarlanmıştır. Ancak, 0.35 um CMOS üretim teknolojisi kullanılması ve kullanılan topolojiler dolayısıyla, devrelerin çalışabileceği minimum besleme gerilim seviyesi 1.8 V ile sınırlı kalmıştır. Devrelerin çektikleri akımlar ise 20-30 uA seviyesindedir. Bu tasarımlar sırasında (triple-well üretim teknlojileri için), önerilen blok gövde izolasyon stratejisi, tasarımı yapılan devrenin gövdesinin tümdevrenin geri kalan kısmından ters kutuplanmış bir jonksiyon diyodu sayesinde izole edilmesine dayanmaktadır ve devrenin gövde gürültüsünden etkilenmesini önemli ölçüde azaltmaktadır. Son olarak, çoğunlukla osilatör devrelerinde uygulanan anahtarlamalı kutuplama tekniği uygulanarak devrelerin düşük frekans gürültü performansının iyileştirilmesi amaçlanmıştır. Çalışmanın geri kalan kısmında, düşük besleme gerilimleriyle çalışabilecek mikron-altı üretim teknolojilerine uygun gerilim referans devre topolojileri üzerine odaklanılmıştır. Bu doğrultuda, iki yeni düşük besleme gerilimli ve düşük güç tüketimli gerilim referans devre topolojisi önerilmiştir. Önerilen topolojiler, 0.18 um CMOS üretim teknolojisinde gerçeklenmiştir. Ölçüm sonuçları, tasarlanan gerilim refarans devrelerinin 0.65 V besleme gerilimi ile çalışabildiğini göstermiştir. Önerilen devre topolojileri ile 0-120 C sıcaklık aralığında, sıcaklık katsayısı 50 ppm/C olan 193 mV seviyesinde referans gerilimleri elde edilmiştir. Devrelerin güç tüketimleri sırasıyla 0.3 uW ve 0.4 uW iken kapladıkları alan 0.2 mm^2 ve 0.08 mm^2 dir. Sonuç olarak, önerilen devre topolojileri ile literatürde yer alan diğer 1V-altı referans devreleri ile karşılatrılabilir seviyede sıcaklık katsayısı olan referans gerilimleri çok daha düşük güç harcamasıyla elde edilmiştir.Voltage references are one of the basic building blocks of many SoCs and mixed-signal ICs such as data converters, voltage regulators and operational amplifiers as they constitute a stable reference voltage for other sub-circuits to generate predictable and repeatable results. Ideally, this reference point should not change with external influences or operating conditions such as temperature, fabrication process variations, power supply variations and transient loading effects. Along with the rapid development of modern communication systems and consumer products, which constitutes the main market for semiconductor industry, the market demand for these System on Chip (SoC) or Mixed Signal ICs to have lower power consumption, higher accuracy and lower cost, and thus, higher integration. Since the performance of the whole system depends strongly to the performance of the reference circuit, this work is focused on fully integrated voltage reference architectures. With this motivation, firstly, different kinds of high precision low noise voltage reference circuits are designed in standard 0.35 um CMOS technology that we have more experience and knowledge of. The essential goal of these studies was high precision and temperature coefficient of the designed voltage reference circuits are on the order of 3 ppm/C with trimming after production. However, since 0.35 um CMOS technology is used in these designs and also due to the chosen topologies their minimum supply voltage can be down to 1.8 V and while current consumption is on the order of 20-30 uA. In the design of the this voltage reference block bulk isolation technique is proposed (for triple-well CMOS processes), in which system blocks are bulk isolated by a reverse biased junction diode from the rest of the die to drastically reduce substrate noise coupling. This is especially important if a very low power voltage reference is designed in a very noisy SoC. Moreover, the switched biasing technique, which is mostly applied to the oscillators, is also implemented to the designed BGR in order to improve the low noise performance of the circuit. The rest of the thesis is focused on new voltage reference topologies that are appropriate for sub-micron technologies operating with low supply voltages. With this motivation two new low voltage and low power voltage reference topologies are proposed. The proposed voltage reference topologies are implemented and fabricated in 0.18 um CMOS technology. Measurement results show that the proposed voltage reference circuits are working properly down to 0.65 V and achieve an output voltage of 193 mV with a temperature coefficient on the order of 50 ppm/C in the temperature range of 0-120C. The total power consumption of the two designed voltage references are 0.3 uW and 0.4 uW at 27 C, while occupying the area of 0.2 mm^2 and 0.08 mm^2, respectively. As a result, the proposed voltage reference topologies generate a reference voltage with comparable level of temperature coefficient and quite low power consumption with respect to the other sub-1V voltage reference circuits reported in the literature.DoktoraPh

    Analog integrated circuit design in ultra-thin oxide CMOS technologies with significant direct tunneling-induced gate current

    Get PDF
    The ability to do mixed-signal IC design in a CMOS technology has been a driving force for manufacturing personal mobile electronic products such as cellular phones, digital audio players, and personal digital assistants. As CMOS has moved to ultra-thin oxide technologies, where oxide thicknesses are less than 3 nm, this type of design has been threatened by the direct tunneling of carriers though the gate oxide. This type of tunneling, which increases exponentially with decreasing oxide thickness, is a source of MOSFET gate current. Its existence invalidates the simplifying design assumption of infinite gate resistance. Its problems are typically avoided by switching to a high-&kappa/metal gate technology or by including a second thick(er) oxide transistor. Both of these solutions come with undesirable increases in cost due to extra mask and processing steps. Furthermore, digital circuit solutions to the problems created by direct tunneling are available, while analog circuit solutions are not. Therefore, it is desirable that analog circuit solutions exist that allow the design of mixed-signal circuits with ultra-thin oxide MOSFETs. This work presents a methodology that develops these solutions as a less costly alternative to high-&kappa/metal gate technologies or thick(er) oxide transistors. The solutions focus on transistor sizing, DC biasing, and the design of current mirrors and differential amplifiers. They attempt to minimize, balance, and cancel the negative effects of direct tunneling on analog design in traditional (non-high-&kappa/metal gate) ultra-thin oxide CMOS technologies. They require only ultra-thin oxide devices and are investigated in a 65 nm CMOS technology with a nominal VDD of 1 V and a physical oxide thickness of 1.25 nm. A sub-1 V bandgap voltage reference that requires only ultra-thin oxide MOSFETs is presented (TC = 251.0 ppm/°C). It utilizes the developed methodology and illustrates that it is capable of suppressing the negative effects of direct tunneling. Its performance is compared to a thick-oxide voltage reference as a means of demonstrating that ultra-thin oxide MOSFETs can be used to build the analog component of a mixed-signal system

    A Sub-kT/q Voltage Reference Operating at 150 mV

    Get PDF
    We propose a subthreshold CMOS voltage reference operating with a minimum supply voltage of only 150 mV, which is three times lower than the minimum value presently reported in the literature. The generated reference voltage is only 17.69 mV. This result has been achieved by introducing a temperature compensation technique that does not require the drain-source voltage of each MOSFET to be larger than 4kT/q. The implemented solution consists in two transistors voltage reference with two MOSFETs of the same threshold-type and exploits the dependence of the threshold voltage on transistor size. Measurements performed over a large sample population of 60 chips from two separate batches show a standard deviation of only 0.29 mV. The mean variation of the reference voltage for VDD ranging from 0.15 to 1.8 V is 359.5 μV/V, whereas the mean variation of VREF in the temperature range from 0°C to 120°C is 26.74 μV/°C. The mean power consumption at 25 °C for VDD = 0.15 V is 26.1 pW. The occupied area is 1200 μm2
    corecore