10 research outputs found

    NASA SERC 1990 Symposium on VLSI Design

    Get PDF
    This document contains papers presented at the first annual NASA Symposium on VLSI Design. NASA's involvement in this event demonstrates a need for research and development in high performance computing. High performance computing addresses problems faced by the scientific and industrial communities. High performance computing is needed in: (1) real-time manipulation of large data sets; (2) advanced systems control of spacecraft; (3) digital data transmission, error correction, and image compression; and (4) expert system control of spacecraft. Clearly, a valuable technology in meeting these needs is Very Large Scale Integration (VLSI). This conference addresses the following issues in VLSI design: (1) system architectures; (2) electronics; (3) algorithms; and (4) CAD tools

    The application of forward error correction techniques in wireless ATM

    Get PDF
    Bibliography: pages 116-121.The possibility of providing wireless access to an ATM network promises nomadic users a communication tool of unparalleled power and flexibility. Unfortunately, the physical realization of a wireless A TM system is fraught with technical difficulties, not the least of which is the problem of supporting a traditional ATM protocol over a non-benign wireless link. The objective of this thesis, titled "The Application of Forward Error Correction Techniques in Wireless ATM' is to examine the feasibility of using forward error correction techniques to improve the perceived channel characteristics to the extent that the channel becomes transparent to the higher layers and allows the use of an unmodified A TM protocol over the channel. In the course of the investigation that this dissertation describes, three possible error control strategies were suggested for implementation in a generic wireless channel. These schemes used a combination of forward error correction coding schemes, automatic repeat request schemes and interleavers to combat the impact of bit errors on the performance of the link. The following error control strategies were considered : 1. A stand alone fixed rate Reed-Solomon encoder/decoder with automatic repeat request. 2. A concatenated Reed-Solomon, convolution encoder/decoder with automatic request and convolution interleaving for the convolution codec. 3. A dynamic rate encoder/decoder using either a concatenated Reed-Solomon, convolution scheme or a Reed-Solomon only scheme with variable length Reed-Solomon words

    NASA Tech Briefs, January 1990

    Get PDF
    Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Science

    NASA Tech Briefs, May 1990

    Get PDF
    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences

    The 1991 3rd NASA Symposium on VLSI Design

    Get PDF
    Papers from the symposium are presented from the following sessions: (1) featured presentations 1; (2) very large scale integration (VLSI) circuit design; (3) VLSI architecture 1; (4) featured presentations 2; (5) neural networks; (6) VLSI architectures 2; (7) featured presentations 3; (8) verification 1; (9) analog design; (10) verification 2; (11) design innovations 1; (12) asynchronous design; and (13) design innovations 2

    Code design and analysis for multiple access communications

    Get PDF
    This thesis explores various coding aspects of multiple access communications, mainly for spread spectrum multiaccess(SSMA) communications and collaborative coding multiaccess(CCMA) communications. Both the SSMA and CCMA techniques permit efficient simultaneous transmission by several users sharing a common channel, without subdivision in time or frequency. The general principle behind these two multiaccess schemes is that one can find sets of signals (codes) which can be combined together to form a composite signal; on reception, the individual signals in the set can each be recovered from the composite signal. For the CCMA scheme, the isolation between users is based on the code structure; for the SSMA scheme, on the other hand, the isolation between users is based on the autocorrelation functions(ACFs) and crosscorrelation functions (CCFs) of the code sequences. It is clear that, in either case, the code design is the key to the system design.For the CCMA system with a multiaccess binary adder channel, a class of superimposed codes is analyzed. It is proved that every constant weight code of weight w and maximal correlation 位 corresponds to a subclass of disjunctive codes of order T 3, the out-of-phase ACFs and CCFs of the codes are constant and equal to 鈭歀. In addition, all codes of the same length are mutually orthogonal.2. Maximal length sequences (m-sequences) over Gaussian integers, suitable for use with QAM modulation, are considered. Two sub-classes of m-sequences with quasi-perfect periodic autocorrelations are obtained. The CCFs between the decimated m-sequences are studied. By applying a simple operation, it is shown that some m-sequences over rational and Gaussian integers can be transformed into perfect sequences with impulsive ACFs.3. Frank codes and Chu codes have perfect periodic ACFs and optimum periodic CCFs. In addition, it is shown that they also have very favourable nonperiodic ACFs; some new results concerning the behaviour of the nonperiodic ACFs are derived. Further, it is proved that the sets of combinedFrank/Chu codes, which contain a larger number of codes than either of the two constituent sets, also have very good periodic CCFs. Based on Frank codes and Chu codes, two interesting classes of real-valued codes with good correlation properties are defined. It is shown that these codes have periodic complementary properties and good periodic and nonperiodic ACF/CCFs.Finally, a hybrid CCMA/SSMA coding scheme is proposed. This new hybrid coding scheme provides a very flexible and powerful multiple accessing capability and allows simple and efficient decoding. Given an SSMA system with K users and a CCMA system with N users, where at most T users are active at any time, then the hybrid system will have K . N users with at most T.K users active at any time. The hybrid CCMA/SSMA coding scheme is superior to the individual CCMA system or SSMA system in terms of information rate, number of users, decoding complexity and external interference rejection capability

    Code design and analysis for multiple access communications

    Get PDF
    This thesis explores various coding aspects of multiple access communications, mainly for spread spectrum multiaccess(SSMA) communications and collaborative coding multiaccess(CCMA) communications. Both the SSMA and CCMA techniques permit efficient simultaneous transmission by several users sharing a common channel, without subdivision in time or frequency. The general principle behind these two multiaccess schemes is that one can find sets of signals (codes) which can be combined together to form a composite signal; on reception, the individual signals in the set can each be recovered from the composite signal. For the CCMA scheme, the isolation between users is based on the code structure; for the SSMA scheme, on the other hand, the isolation between users is based on the autocorrelation functions(ACFs) and crosscorrelation functions (CCFs) of the code sequences. It is clear that, in either case, the code design is the key to the system design.For the CCMA system with a multiaccess binary adder channel, a class of superimposed codes is analyzed. It is proved that every constant weight code of weight w and maximal correlation 位 corresponds to a subclass of disjunctive codes of order T 3, the out-of-phase ACFs and CCFs of the codes are constant and equal to 鈭歀. In addition, all codes of the same length are mutually orthogonal.2. Maximal length sequences (m-sequences) over Gaussian integers, suitable for use with QAM modulation, are considered. Two sub-classes of m-sequences with quasi-perfect periodic autocorrelations are obtained. The CCFs between the decimated m-sequences are studied. By applying a simple operation, it is shown that some m-sequences over rational and Gaussian integers can be transformed into perfect sequences with impulsive ACFs.3. Frank codes and Chu codes have perfect periodic ACFs and optimum periodic CCFs. In addition, it is shown that they also have very favourable nonperiodic ACFs; some new results concerning the behaviour of the nonperiodic ACFs are derived. Further, it is proved that the sets of combinedFrank/Chu codes, which contain a larger number of codes than either of the two constituent sets, also have very good periodic CCFs. Based on Frank codes and Chu codes, two interesting classes of real-valued codes with good correlation properties are defined. It is shown that these codes have periodic complementary properties and good periodic and nonperiodic ACF/CCFs.Finally, a hybrid CCMA/SSMA coding scheme is proposed. This new hybrid coding scheme provides a very flexible and powerful multiple accessing capability and allows simple and efficient decoding. Given an SSMA system with K users and a CCMA system with N users, where at most T users are active at any time, then the hybrid system will have K . N users with at most T.K users active at any time. The hybrid CCMA/SSMA coding scheme is superior to the individual CCMA system or SSMA system in terms of information rate, number of users, decoding complexity and external interference rejection capability

    NASA Tech Briefs, Fall 1985

    Get PDF
    Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences

    Embedded coding algorithms applicable to time variable channels

    Get PDF
    This thesis investigates new design and implementation techniques applicable to modern communication systems operating over time variable channels. Three areas of interest are investigated. These include, source coding in conjunction with real-time channel evaluation, channel coding and modem design. An investigation of source coding methods has led to the development of a new embedded real time channel evaluation, based on statistical techniques. The performance of this technique is examined using simulation techniques for channels with and without memory. Existing channel coding schemes applicable to time variable channels have been examined. This led to the formulation of a new coding technique, termed embedded encoding. Two implementations of such codes, embedded array codes and embedded convolutional codes, were developed. The theoretical and practical performance of these codes has been investigated. The final area of investigation has been the development of a 4-tone multi-frequency shift keying modem. In keeping with the intention of totally digital system design, the demodulator has been im颅plemented on a single digital signal processing card. The demodulation method developed employs an embedded synchronisation technique, termed Code-Assisted Bit Synchronisation. The demodulator performs symbol synchronisation by utilising the convolutional code used for the purpose of channel coding. It thus performs the combined functions of the demodulator, decoder and symbol timing recovery, which are normally found as separate sub颅systems. In combining these subsystems a more efficient modem has been developed

    The Deep Space Network

    Get PDF
    Progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations are reported
    corecore