258 research outputs found

    Topological and Graph-coloring Conditions on the Parameter-independent Stability of Second-order Networked Systems

    Get PDF
    In this paper, we study parameter-independent stability in qualitatively heterogeneous passive networked systems containing damped and undamped nodes. Given the graph topology and a set of damped nodes, we ask if output consensus is achieved for all system parameter values. For given parameter values, an eigenspace analysis is used to determine output consensus. The extension to parameter-independent stability is characterized by a coloring problem, named the richly balanced coloring (RBC) problem. The RBC problem asks if all nodes of the graph can be colored red, blue and black in such a way that (i) every damped node is black, (ii) every black node has blue neighbors if and only if it has red neighbors, and (iii) not all nodes in the graph are black. Such a colored graph is referred to as a richly balanced colored graph. Parameter-independent stability is guaranteed if there does not exist a richly balanced coloring. The RBC problem is shown to cover another well-known graph coloring scheme known as zero forcing sets. That is, if the damped nodes form a zero forcing set in the graph, then a richly balanced coloring does not exist and thus, parameter-independent stability is guaranteed. However, the full equivalence of zero forcing sets and parameter-independent stability holds only true for tree graphs. For more general graphs with few fundamental cycles an algorithm, named chord node coloring, is proposed that significantly outperforms a brute-force search for solving the NP-complete RBC problem.Comment: 30 pages, accepted for publication in SICO
    • …
    corecore