152,608 research outputs found

    Multi-switching combination synchronization of chaotic systems

    Get PDF
    A novel synchronization scheme is proposed for a class of chaotic systems, extending the concept of multi-switching synchronization to combination synchronization such that the state variables of two or more driving systems synchronize with different state variables of the response system, simultaneously. The new scheme, multi-switching combination synchronization (MSCS), represents a significant extension of earlier multi-switching schemes in which two chaotic systems, in a driver-response configuration, are multi-switched to synchronize up to a scaling factor. In MSCS, the chaotic driving systems multi-switch a response chaotic system in combination synchronization. For certain choices of the scaling factors, MSCS reduces to multi-switching synchronization, implying that the latter is a special case of MSCS. A theoretical approach to control design, based on backstepping, is presented and validated using numerical simulations

    One symbol blind synchronization in SIMO molecular communication systems

    Get PDF
    Molecular communication offers new possibilities in the micro-and nano-scale application environments. Similar to other communication paradigms, molecular communication also requires clock synchronization between the transmitter and the receiver nanomachine in many time-and control-sensitive applications. This letter presents a novel high-efficiency blind clock synchronization mechanism. Without knowing the channel parameters of the diffusion coefficient and the transmitter-receiver distance, the receiver only requires one symbol to achieve synchronization. The samples are used to estimate the propagation delay by least square method and achieve clock synchronization. Single-input multiple-output (SIMO) diversity design is then proposed to mitigate channel noise and therefore to improve the synchronization accuracy. The simulation results show that the proposed clock synchronization mechanism has a good performance and may help chronopharmaceutical drug delivery applications

    Some questions of space bioengineering

    Get PDF
    Zero-gravity offers selective effect on growth and metabolic activity unicellular organisms as well as unique opportunities in purification of organic compounds. These make it possible to consider the biosynthesis and recovery of certain metabolites economically feasible in space. Design, construction and operation of systems for the above mentioned purposes requires interdisciplinary actions within the scope of a new discipline: space bioengineering. The problems and perspectives of this discipline particularly in the application of bioreactor-recovery systems in space to manufacture metabolites of high economic and scientific value. Special attention is paid to pivotal factors such as various mass transport phenomena, contamination control, automatic control of optimum environment and synchronization of the operation of the biological (biosynthesis) and the physiochemical (recovery-purification) systems

    A novel 4 dimensional hyperchaotic system with its control, Synchronization and Implementation

    Get PDF
    This paper presents a new hyperchaotic system which shows some interesting features, the system is 4-dimensional with 4 nonlinearities. An extensive numerical analysis has showed that the system has some interesting features and strange behaviors. The numerical analysis includes studying the effect of system parameters and initial conditions. Some of the important properties of the system with parameter set, in which the system is hyperchaotic, such as Lyapunov exponents and Lyapunov dimension, dissipation and symmetry are found and discussed. In the next part of our work, a tracking controller for the proposed system is designed and then a synchronization control system for two identical systems is designed. The design procedure uses combination of a simple synergetic control with adaptive updating laws to identify the unknown parameters derived basing on Lyapunov theorem. Hardware implementation based on microcontroller unit (MCU) board is proposed and tested and used to experimentally validate the designed control and synchronization systems. As an application, the designed synchronization system is used as a secure analogue communication system. Using MATLAB, Simulation study for the control and synchronization systems is presented. The simulation and experimental study have been showed excellent results
    corecore