15,764 research outputs found

    Numerical cubature using error-correcting codes

    Full text link
    We present a construction for improving numerical cubature formulas with equal weights and a convolution structure, in particular equal-weight product formulas, using linear error-correcting codes. The construction is most effective in low degree with extended BCH codes. Using it, we obtain several sequences of explicit, positive, interior cubature formulas with good asymptotics for each fixed degree tt as the dimension n→∞n \to \infty. Using a special quadrature formula for the interval [arXiv:math.PR/0408360], we obtain an equal-weight tt-cubature formula on the nn-cube with O(n^{\floor{t/2}}) points, which is within a constant of the Stroud lower bound. We also obtain tt-cubature formulas on the nn-sphere, nn-ball, and Gaussian Rn\R^n with O(nt−2)O(n^{t-2}) points when tt is odd. When μ\mu is spherically symmetric and t=5t=5, we obtain O(n2)O(n^2) points. For each t≥4t \ge 4, we also obtain explicit, positive, interior formulas for the nn-simplex with O(nt−1)O(n^{t-1}) points; for t=3t=3, we obtain O(n) points. These constructions asymptotically improve the non-constructive Tchakaloff bound. Some related results were recently found independently by Victoir, who also noted that the basic construction more directly uses orthogonal arrays.Comment: Dedicated to Wlodzimierz and Krystyna Kuperberg on the occasion of their 40th anniversary. This version has a major improvement for the n-cub

    Genuinely multipartite entangled states and orthogonal arrays

    Full text link
    A pure quantum state of N subsystems with d levels each is called k-multipartite maximally entangled state, written k-uniform, if all its reductions to k qudits are maximally mixed. These states form a natural generalization of N-qudits GHZ states which belong to the class 1-uniform states. We establish a link between the combinatorial notion of orthogonal arrays and k-uniform states and prove the existence of several new classes of such states for N-qudit systems. In particular, known Hadamard matrices allow us to explicitly construct 2-uniform states for an arbitrary number of N>5 qubits. We show that finding a different class of 2-uniform states would imply the Hadamard conjecture, so the full classification of 2-uniform states seems to be currently out of reach. Additionally, single vectors of another class of 2-uniform states are one-to-one related to maximal sets of mutually unbiased bases. Furthermore, we establish links between existence of k-uniform states, classical and quantum error correction codes and provide a novel graph representation for such states.Comment: 24 pages, 7 figures. Comments are very welcome

    Generalized resolution for orthogonal arrays

    Full text link
    The generalized word length pattern of an orthogonal array allows a ranking of orthogonal arrays in terms of the generalized minimum aberration criterion (Xu and Wu [Ann. Statist. 29 (2001) 1066-1077]). We provide a statistical interpretation for the number of shortest words of an orthogonal array in terms of sums of R2R^2 values (based on orthogonal coding) or sums of squared canonical correlations (based on arbitrary coding). Directly related to these results, we derive two versions of generalized resolution for qualitative factors, both of which are generalizations of the generalized resolution by Deng and Tang [Statist. Sinica 9 (1999) 1071-1082] and Tang and Deng [Ann. Statist. 27 (1999) 1914-1926]. We provide a sufficient condition for one of these to attain its upper bound, and we provide explicit upper bounds for two classes of symmetric designs. Factor-wise generalized resolution values provide useful additional detail.Comment: Published in at http://dx.doi.org/10.1214/14-AOS1205 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Absolutely Maximally Entangled states, combinatorial designs and multi-unitary matrices

    Get PDF
    Absolutely Maximally Entangled (AME) states are those multipartite quantum states that carry absolute maximum entanglement in all possible partitions. AME states are known to play a relevant role in multipartite teleportation, in quantum secret sharing and they provide the basis novel tensor networks related to holography. We present alternative constructions of AME states and show their link with combinatorial designs. We also analyze a key property of AME, namely their relation to tensors that can be understood as unitary transformations in every of its bi-partitions. We call this property multi-unitarity.Comment: 18 pages, 2 figures. Comments are very welcom

    Commutative association schemes

    Full text link
    Association schemes were originally introduced by Bose and his co-workers in the design of statistical experiments. Since that point of inception, the concept has proved useful in the study of group actions, in algebraic graph theory, in algebraic coding theory, and in areas as far afield as knot theory and numerical integration. This branch of the theory, viewed in this collection of surveys as the "commutative case," has seen significant activity in the last few decades. The goal of the present survey is to discuss the most important new developments in several directions, including Gelfand pairs, cometric association schemes, Delsarte Theory, spin models and the semidefinite programming technique. The narrative follows a thread through this list of topics, this being the contrast between combinatorial symmetry and group-theoretic symmetry, culminating in Schrijver's SDP bound for binary codes (based on group actions) and its connection to the Terwilliger algebra (based on combinatorial symmetry). We propose this new role of the Terwilliger algebra in Delsarte Theory as a central topic for future work.Comment: 36 page
    • …
    corecore