536 research outputs found

    Electricity from photovoltaic solar cells: Flat-Plate Solar Array Project final report. Volume VI: Engineering sciences and reliability

    Get PDF
    The Flat-Plate Solar Array (FSA) Project, funded by the U.S. Government and managed by the Jet Propulsion Laboratory, was formed in 1975 to develop the module/array technology needed to attain widespread terrestrial use of photovoltaics by 1985. To accomplish this, the FSA Project established and managed an Industry, University, and Federal Government Team to perform the needed research and development. This volume of the series of final reports documenting the FSA Project deals with the Project's activities directed at developing the engineering technology base required to achieve modules that meet the functional, safety and reliability requirements of large-scale terrestrial photovoltaic systems applications. These activities included: (1) development of functional, safety, and reliability requirements for such applications; (2) development of the engineering analytical approaches, test techniques, and design solutions required to meet the requirements; (3) synthesis and procurement of candidate designs for test and evaluation; and (4) performance of extensive testing, evaluation, and failure analysis to define design shortfalls and, thus, areas requiring additional research and development. During the life of the FSA Project, these activities were known by and included a variety of evolving organizational titles: Design and Test, Large-Scale Procurements, Engineering, Engineering Sciences, Operations, Module Performance and Failure Analysis, and at the end of the Project, Reliability and Engineering Sciences. This volume provides both a summary of the approach and technical outcome of these activities and provides a complete Bibliography (Appendix A) of the published documentation covering the detailed accomplishments and technologies developed

    Effect of dust and shadow on performance of solar photovoltaic modules : Experimental analysis

    Get PDF
    This study presents an experimental performance of a solar photovoltaic module under clean, dust, and shadow conditions. It is found that there is a significant decrease in electrical power produced (40% in the case of dust panels and 80% in the case of shadow panels) and a decrease in efficiency of around 6% in the case with dust and 9% in the case with the shadow, as compared to the clean panel. From the results, it is clear that there is a substantial effect of a partial shadow than dust on the performance of the solar panel. This is due to the more obstruction of the sunlight by the shadowed area compared to the dust. The dust being finer particles for the given local experimental condition did not influence the panel than the shadow. The main outcome of this study is that the shadowing effect may cause more harm to the PV module than dust for the given experimental conditions. However, Further long-term studies on the effect of dust and shadow are needed to understand the effect on performance degradation and module life

    Development of Maximum Power Extraction Algorithms for PV system With Non-Uniform Solar Irradiances

    Get PDF
    This thesis addresses the problem of extraction of maximum power from PV arrays subjected to non-uniform solar irradiances e.g partial shading. In the past, a number of maximum power point tracking algorithms (MPPTs) such as Perturb & Observe, Hill climbing, Incremental Conductance, etc. have been proposed. These are extensively used for obtaining maximum power from a PV module to maximize power yield from PV systems under uniform solar irradiance. However, these techniques have not considered partial shading conditions and the stochastic nature of solar insolation. In the event of non-uniform solar insolation, a number multiple maximum power points (MPPs) appear in the power-voltage characteristic of the PV module. In the present thesis, the stochastic nature of the solar insolation is considered to obtain the global MPP of a PV module with a focus on developing global optimization techniques for MPPT that would handle the multiple MPPs. Thus, the thesis will address the above problem by developing a number of global MPPT algorithms. In this thesis, an extensive review on MPPT algorithms for both uniform and non-uniform insolation levels is presented. Subsequently, an analysis with respect to their merits, demerits and applications have been provided in order to design new MPPTs to achieve higher MPPT efficiency under non-uniform solar irradiances. Firstly, PV modules are modelled with and without bypass diodes for handling Partial shading conditions (PSCs). Then, a new Ring pattern (RP) configuration has been proposed which is compared with different existing configurations such as Series parallel (SP), Total cross tied(TCT) and Bridge linked(BL) configurations on the basis of maximum power and fill factor. As described earlier, under non-uniform irradiances the MPPT problem boil down to determining the global MPP. Thus, the MPPT problem can be cast as a global optimization problem. It may be noted that evolutionary computing approaches are extensively used for obtaining global optimum solutions. One of the most recent evolutionary optimization techniques called grey wolf optimization technique has gained enormous popularity as an efficient global optimization approach. In view of this, Grey wolf optimization is employed to design a global MPPT such that maximum power from PV modules can be extracted which will work under partial shading conditions. Its performance has been compared with two existing MPPTs namely P&O and IPSO based MPPT methods. From the obtained simulation and experimental results, it was found that the GWO based MPPT exhibits superior MPPT performance as compared to both P&O and IPSO MPPTs on the basis of dynamic response, faster convergence to GP and higher tracking efficiency. Further, in order to scale down the search space of GWO which helps to speed up for achieving convergence towards the GP, a fusion of GWO-MPPT with P&O MPPT for obtaining maximum power from a PV system with different possible patterns is developed. An experimental setup of 600W solar simulator is used in the laboratory having characteristics of generating partial shading situation. Firstly, the developed algorithms were implemented for a PV system using MATLAB/SIMULINK. Subsequently, the aforesaid experimental setup is used to implement the proposed global MPPT algorithms. From the obtained simulation and experimental results it is observed that the Hybrid-MPPT converges to the GP with least time enabling highest possible maximum power from the solar PV system. In this thesis, analytical modeling of PV modules for handling non-uniform irradiances is pursued as well as a new RP configuration of PV modules is developed to achieve maximum power and fill factor. In order to extract maximum power from PV panels subjected to non-uniform solar irradiances, two new MPPT algorithms are developed namely Grey wolf optimization based MPPT (GWO-MPPT) and GWO assisted PO (GWO-PO)

    Current-Sensorless Control Strategy for the MPPT of a PV Cell:An Energy-Based Approach

    Get PDF
    A novel energy-based modelling and control strategy is developed and implemented to solve the maximum power point tracking problem when a photovoltaic cell array is connected to consumption loads. A mathematical model that contains key characteristic parameters of an energy converter stage connected to a photovoltaic cell array is proposed and recast using the port-Hamiltonian framework. The system consists of input-output power port pairs and storage and dissipating elements. Then, a current-sensorless control loop for a maximum power point tracking is designed, acting over the energy converter stage and following an interconnection and damping assignment passivity-based strategy. The performance of the proposed strategy is compared to a (classical) sliding mode control law. Our energy-based strategy is implemented in a hardware platform with a sampling rate of 122 Hz, resulting in lower dynamic power consumption compared to other maximum power point tracking control strategies. Numerical simulations and experimental results validate the performance of the proposed energy-based modelling and the novel control law approach

    Survey on Photo-Voltaic Powered Interleaved Converter System

    Get PDF
    Renewable energy is the best solution to meet the growing demand for energy in the country. The solar energy is considered as the most promising energy by the researchers due to its abundant availability, eco-friendly nature, long lasting nature, wide range of application and above all it is a maintenance free system. The energy absorbed by the earth can satisfy 15000 times of today’s total energy demand and its hundred times more than that our conventional energy like coal and other fossil fuels. Though, there are overwhelming advantages in solar energy, It has few drawbacks as well such as its low conversion ratio, inconsistent supply of energy due to variation in the sun light, less efficiency due to ripples in the converter, time dependent and, above all, high capitation cost. These aforementioned flaws have been addressed by the researchers in order to extract maximum energy and attain hundred percentage benefits of this heavenly resource. So, this chapter presents a comprehensive investigation based on photo voltaic (PV) system requirements with the following constraints such as system efficiency, system gain, dynamic response, switching losses are investigated. The overview exhibits and identifies the requirements of a best PV power generation system

    Performance Enhancement of a Partially Shaded Photovoltaic Array by Optimal Reconfiguration and Current Injection Schemes

    Get PDF
    The output of a photovoltaic array is reduced considerably when PV panels are shaded even partially. The impact of shading causes an appreciable loss in power delivery, since the PV panels are connected in series and parallel to contribute to the required voltage and power for the load. The prevailing research on mitigating the shading impact is mostly based on complex reconfiguration strategies where the PV panels are subjected to complex rewiring schemes. On the other hand, to disperse the shading many studies in the literature defend the physical rearrangement of the panels. The available intensive reconfiguration schemes, such as the series parallel (SP), bridge link (BL), honeycomb (HC), and total cross tied (TCT) schemes, try only to mitigate the shading impact and there is no scope for compensation; as a result, a loss of output power is inevitable. In the proposed research work, both the mitigation of and the compensation for the losses incurred due to shading are studied. In this work, an optimal reconfiguration scheme is adopted to reduce the shading impact and a power electronic circuit with a battery source is designed to compensate for the shading losses in all aspects. In the optimal reconfiguration scheme, a bifurcation strategy is adopted in each column and the electrical connections of the PV panels are interchanged such that the shading impact is dispersed. The power electronic circuit consists of a half-bridge buck converter with a battery source that injects the current required by a shaded column. This setup compensates for the shaded PV array’s power and improves the efficiency of the total system. The proposed scheme was implemented in a 3200 W system and subjected to various shading patterns, including single panel shading, corner shading, long and wide shading, and random shading. The proposed scheme was simulated in the MATLAB Simulink environment and compared with static 4 × 4 PV array configurations, including the series parallel (SP), bridge link (BL), honeycomb (HC), and total cross tied (TCT) configurations. The comparative performance was assessed in terms of mismatch power loss, fill factor, and efficiency. The proposed system is suitable for all shading patterns and was proved to be very efficient even in the worst shading, where 1353 W was saved

    Study of the Cross-Coupling Effects (CCE) in series connected Distributed MPPT systems

    Get PDF
    One of the abundant available renewable source of energy that has attracted interest of researchers today has been the solar energy. The demand for the harvesting of maximum energy has called for innovation of newer methods or technologies so that the PV panel can be operated at its peak power under partial shading and various dynamic atmospheric conditions. In this thesis, we have discussed the modeling of a PV module. We have observed the characteristics of the PV module for different temperatures and solar insolation. The Perturb & Observe (P&O) maximum power point tracking algorithm has been employed to operate the panel voltage at its MPP. The direct duty ratio control has been employed. The demand for high voltage operations requires the PV modules to be series connected. So, when the modules are series connected, under partial shading and various dynamic atmospheric conditions the classical MPPT control strategy fails. The Distributed Maximum power point tracking (DMPPT) control technique has been a good replacement to the classical MPPT algorithm. So the DMPPT technique has also been discussed thoroughly. Under partial shading conditions there has been seen some peculiarities in the system when the modules are series connected. Such peculiarities are known as the CrossCoupling Effects (CCE). The coupling effects have been studied and detected thus

    Técnicas para modelar sistemas fotovoltaicos bajo sombreado parcial

    Get PDF
    Context: The energy produced by photovoltaic (PV) systems operating under partial shading conditions depends on the connections between the modules and the shading pattern. Several mathematical models have been proposed to address this topic exhibiting different compromises between accuracy, calculation speed and PV model complexity. However, it is not evident how to choose a model for a given application to ensure reliable results.Method: Several mathematical models of PV systems under shading conditions were analyzed to synthetize the characteristics, advantages and drawbacks of each one of them. Three main categories have been identified: analytical, simulation and experimental methods. Analytical and simulation methods require a basic PV model and mathematical analysis supported by computational tools; while experimental methods are based in data or measurements.Results: From the analysis of the published solutions, three representative modeling techniques with different characteristics were selected to perform a practical comparison. Those techniques were implemented and contrasted in realistic scenarios to identify the effects of the compromise between accuracy, calculation speed and PV model complexity.Conclusions: To select a mathematical model it must be taken into account the connection scheme, model of the PV unit, model of the bypass and blocking diodes, size of the system, programming complexity and simulation time. This paper provides some guidelines to choose the right model for a particular application depending on those characteristics.  Contexto: La energía producida por un sistema fotovoltaico (PV) operando en condiciones de sombreado parcial depende de las conexiones entre sus módulos y del perfil de sombra. En la literatura existen reportados múltiples modelos matemáticos en este tópico, los cuales presentan diferentes compromisos entre precisión, velocidad de cálculo y complejidad. No obstante, no es evidente como seleccionar uno de esos modelos para obtener resultados confiables en una aplicación particular.Método: Se analizaron múltiples modelos matemáticos de sistemas PV operando en condiciones de sombreado para sintetizar sus características, ventajas y desventajas. De ese análisis se detectaron tres categorías principales: métodos analíticos, de simulación y experimentales. Los métodos analíticos y de simulación requieren un modelo básico PV y análisis matemáticos soportados por herramientas de cómputo; en contraste los métodos experimentales se basan en datos y mediciones.Resultados: A partir de los análisis de los modelos reportados, se seleccionaron tres técnicas de modelado representativas para realizar una comparación práctica. Esas técnicas se implementaron y contrastaron en escenarios realistas para identificar los efectos del compromiso entre precision, velocidad de cálculo y complejidad del modelo PV.Conclusiones: Para seleccionar un modelo matemático se deben tener en cuenta el esquema de conexión, el modelo de la unidad PV, el modelo de los diodos de bloqueo y puente, el tamaño del sistema, la complejidad de programación y el tiempo de simulación. Este artículo provee algunas guías para seleccionar el modelo adecuado para una aplicación en particular dependiendo de esas características.

    Real-time Modelling, Diagnostics and Optimised MPPT for Residential PV Systems

    Get PDF
    The work documented in the thesis has been focused into two main sections. The first part is centred around Maximum Power Point Tracking (MPPT) techniques for photovoltaic arrays, optimised for fast-changing environmental conditions, and is described in Chapter 2. The second part is dedicated to diagnostic functions as an additional tool to maximise the energy yield of photovoltaic arrays (Chapter 4). Furthermore, mathematical models of PV panels and arrays have been developed and built (detailed in Chapter 3) for testing MPPT algorithms, and for diagnostic purposes.In Chapter 2 an overview of the today’s most popular MPPT algorithms is given, and, considering their difficulty in tracking under variable conditions, a simple technique is proposed to overcome this drawback. The method separates the MPPT perturbation effects from environmental changes and provides correct information to the tracker, which is therefore not affected by the environmental fluctuations. The method has been implemented based on the Perturb and Observe (P&O), and the experimental results demonstrate that it preserves the advantages of the existing tracker in being highly efficient during stable conditions, having a simple and generic nature, and has the benefit of also being efficient in fast-changing conditions. Furthermore, the algorithm has been successfully implemented on a commercial PV inverter, currently on the market. In Chapter 3, an overview of the existing mathematical models used to describe the electrical behaviour of PV panels is given, followed by the parameter determination for the five-parameter single-exponential model based on datasheet values, which has been used for the implementation of a PV simulator taking in account the shape, size ant intensity of partial shadow in respect to bypass diodes.In order to eliminate the iterative calculations for parameter determinations, a simplified three-parameter model is used throughout Chapter 4, dedicated to diagnostic functions of PV panels. Simple analytic expressions for the model important parameters, which could reflect deviations from the normal (e.g. from datasheet or reference measurement) I −V characteristic, is proposed.A considerable part of the thesis is dedicated to the diagnostic functions of crystalline photovoltaic panels, aimed to detect failures related to increased series resistance and partial shadowing, the two major factors responsible for yield-reduction of residential photovoltaic systems.Combining the model calculations with measurements, a method to detect changes in the panels’ series resistance based on the slope of the I − V curve in the vicinity of open-circuit conditions and scaled to Standard Test Conditions (STC) , is proposed. The results confirm the benefits of the proposed method in terms of robustness to irradiance changes and to partial shadows.In order to detect partial shadows on PV panels, a method based on equivalent thermal voltage (Vt) monitoring is proposed. Vt is calculated using the simplified three-parameter model, based on experimental curve. The main advantages of the method are the simple expression for Vt, high sensitivity to even a relatively small area of partial shadow and very good robustness against changes in series resistance.Finally, in order to quantify power losses due to different failures, e.g. partial shadows or increased series resistance, a model based approach has been proposed to estimate the panel rated power (in STC). Although it is known that the single-exponential model has low approximation precision at low irradiation conditions, using the previously determined parameters it was possible to achieve relatively good accuracy. The main advantage of the method is that it relies on already determined parameters (Rsm, Vt) based on measurements, therefore reducing the errors introduced by the limitation of the single-exponential model especially at low irradiation conditions
    corecore