474 research outputs found

    Security and Efficiency Analysis of the Hamming Distance Computation Protocol Based on Oblivious Transfer

    Get PDF
    open access articleBringer et al. proposed two cryptographic protocols for the computation of Hamming distance. Their first scheme uses Oblivious Transfer and provides security in the semi-honest model. The other scheme uses Committed Oblivious Transfer and is claimed to provide full security in the malicious case. The proposed protocols have direct implications to biometric authentication schemes between a prover and a verifier where the verifier has biometric data of the users in plain form. In this paper, we show that their protocol is not actually fully secure against malicious adversaries. More precisely, our attack breaks the soundness property of their protocol where a malicious user can compute a Hamming distance which is different from the actual value. For biometric authentication systems, this attack allows a malicious adversary to pass the authentication without knowledge of the honest user's input with at most O(n)O(n) complexity instead of O(2n)O(2^n), where nn is the input length. We propose an enhanced version of their protocol where this attack is eliminated. The security of our modified protocol is proven using the simulation-based paradigm. Furthermore, as for efficiency concerns, the modified protocol utilizes Verifiable Oblivious Transfer which does not require the commitments to outputs which improves its efficiency significantly

    Private set intersection: A systematic literature review

    Get PDF
    Secure Multi-party Computation (SMPC) is a family of protocols which allow some parties to compute a function on their private inputs, obtaining the output at the end and nothing more. In this work, we focus on a particular SMPC problem named Private Set Intersection (PSI). The challenge in PSI is how two or more parties can compute the intersection of their private input sets, while the elements that are not in the intersection remain private. This problem has attracted the attention of many researchers because of its wide variety of applications, contributing to the proliferation of many different approaches. Despite that, current PSI protocols still require heavy cryptographic assumptions that may be unrealistic in some scenarios. In this paper, we perform a Systematic Literature Review of PSI solutions, with the objective of analyzing the main scenarios where PSI has been studied and giving the reader a general taxonomy of the problem together with a general understanding of the most common tools used to solve it. We also analyze the performance using different metrics, trying to determine if PSI is mature enough to be used in realistic scenarios, identifying the pros and cons of each protocol and the remaining open problems.This work has been partially supported by the projects: BIGPrivDATA (UMA20-FEDERJA-082) from the FEDER Andalucía 2014– 2020 Program and SecTwin 5.0 funded by the Ministry of Science and Innovation, Spain, and the European Union (Next Generation EU) (TED2021-129830B-I00). The first author has been funded by the Spanish Ministry of Education under the National F.P.U. Program (FPU19/01118). Funding for open access charge: Universidad de Málaga/CBU

    A novel k-out-of-n Oblivious Transfer Protocols Based on Bilinear Pairings

    Get PDF
    Low bandwidth consumption is an important issue in a busy commercial network whereas time may not be so crucial, for example, the end-of-day financial settlement for commercial transactions in a day. In this paper, we construct a secure and low bandwidth-consumption k-out-of-n oblivious transfer scheme based on bilinear pairings. We analyze the security and efficiency of our scheme and conclude that our scheme is more secure and efficient in communication bandwidth consumption than most of the other existing oblivious transfer schemes that we know

    Generic Construction of UC-Secure Oblivious Transfer

    No full text
    International audienceWe show how to construct a completely generic UC-secure oblivious transfer scheme from a collision-resistant chameleon hash scheme (CH) and a CCA encryption scheme accepting a smooth projective hash function (SPHF). Our work is based on the work of Abdalla et al. at Asiacrypt 2013, where the authors formalize the notion of SPHF-friendly commitments, i.e. accepting an SPHF on the language of valid commitments (to allow implicit decommitment), and show how to construct from them a UC-secure oblivious transfer in a generic way. But Abdalla et al. only gave a DDH-based construction of SPHF-friendly commitment schemes, furthermore highly relying on pairings. In this work, we show how to generically construct an SPHF-friendly commitment scheme from a collision-resistant CH scheme and an SPHF-friendly CCA encryption scheme. This allows us to propose an instanciation of our schemes based on the DDH, as efficient as that of Abdalla et al., but without requiring any pairing. Interestingly, our generic framework also allows us to propose an instantiation based on the learning with errors (LWE) assumption. For the record, we finally propose a last instanciation based on the decisional composite residuosity (DCR) assumption

    Supersingular Isogeny Oblivious Transfer

    Get PDF
    We present an oblivious transfer (OT) protocol that combines the OT scheme of Chou and Orlandi together with thesupersingular isogeny Diffie-Hellman (SIDH) primitive of De Feo, Jao, and Pl\^ut. Our construction is a candidate for post-quantum secure OT and demonstrates that SIDH naturally supports OT functionality. We consider the protocol in the simplest configuration of (21)\binom{2}{1}-OT and analyze the protocol to verify its security.Comment: 26 pages, 4 figures, Submitte

    Attribute Based Pseudonyms : Anonymous and Linkable Scoped Credentials

    Get PDF
    Attribute-based credentials (ABCs) provide an efficient way to transfer custody of personal and private data to the final user, while minimizing the risk of sensitive data revelation and thus granting anonymity. Nevertheless, this method cannot detect whether one attribute has been used more than once without compromising anonymity when the emitter and consumer collude with one another. The protocol proposed in this article deals with this issue by using a modification of ZSS pairing-based short signatures over elliptic curves and Verheul's self-blinded credentials scheme. Each user can generate an identifier (pseudonym) that is unique and verifiable by everyone in a given scope, without compromising anonymity. However, the identifier cannot be reused in the same scope, since such reuse would be detected
    corecore