4 research outputs found

    Color space adaptation for video coding

    Get PDF
    Processament d'imatges abans de ser codificades pel codificador HEVC amb la finalitat d'augmentar la qualitat i la fidelitat.[ANGLÈS] Project on the objective and subjective improvements by pre-processing images to be encoded into a video.[CASTELLÀ] Proyecto sobre la repercusión en la mejora de calidad objetiva y subjetiva del pre-procesado de imágenes a codificar con vídeo.[CATALÀ] Projecte sobre la repercussió en la millora de la qualitat objectiva i subjectiva del pre-processament d'imatges a codificar amb vídeo

    High dynamic range display systems

    Get PDF
    High contrast ratio (CR) enables a display system to faithfully reproduce the real objects. However, achieving high contrast, especially high ambient contrast (ACR), is a challenging task. In this dissertation, two display systems with high CR are discussed: high ACR augmented reality (AR) display and high dynamic range (HDR) display. For an AR display, we improved its ACR by incorporating a tunable transmittance liquid crystal (LC) film. The film has high tunable transmittance range, fast response time, and is fail-safe. To reduce the weight and size of a display system, we proposed a functional reflective polarizer, which can also help people with color vision deficiency. As for the HDR display, we improved all three aspects of the hardware requirements: contrast ratio, color gamut and bit-depth. By stacking two liquid crystal display (LCD) panels together, we have achieved CR over one million to one, 14-bit depth with 5V operation voltage, and pixel-by-pixel local dimming. To widen color gamut, both photoluminescent and electroluminescent quantum dots (QDs) have been investigated. Our analysis shows that with QD approach, it is possible to achieve over 90% of the Rec. 2020 color gamut for a HDR display. Another goal of an HDR display is to achieve the 12-bit perceptual quantizer (PQ) curve covering from 0 to 10,000 nits. Our experimental results indicate that this is difficult with a single LCD panel because of the sluggish response time. To overcome this challenge, we proposed a method to drive the light emitting diode (LED) backlight and the LCD panel simultaneously. Besides relatively fast response time, this approach can also mitigate the imaging noise. Finally yet importantly, we improved the display pipeline by using a HDR gamut mapping approach to display HDR contents adaptively based on display specifications. A psychophysical experiment was conducted to determine the display requirements

    Human-centered display design : balancing technology & perception

    Get PDF
    corecore