3,654 research outputs found

    New Codes and Inner Bounds for Exact Repair in Distributed Storage Systems

    Full text link
    We study the exact-repair tradeoff between storage and repair bandwidth in distributed storage systems (DSS). We give new inner bounds for the tradeoff region and provide code constructions that achieve these bounds.Comment: Submitted to the IEEE International Symposium on Information Theory (ISIT) 2014. This draft contains 8 pages and 4 figure

    On Minimizing Data-read and Download for Storage-Node Recovery

    Full text link
    We consider the problem of efficient recovery of the data stored in any individual node of a distributed storage system, from the rest of the nodes. Applications include handling failures and degraded reads. We measure efficiency in terms of the amount of data-read and the download required. To minimize the download, we focus on the minimum bandwidth setting of the 'regenerating codes' model for distributed storage. Under this model, the system has a total of n nodes, and the data stored in any node must be (efficiently) recoverable from any d of the other (n-1) nodes. Lower bounds on the two metrics under this model were derived previously; it has also been shown that these bounds are achievable for the amount of data-read and download when d=n-1, and for the amount of download alone when d<n-1. In this paper, we complete this picture by proving the converse result, that when d<n-1, these lower bounds are strictly loose with respect to the amount of read required. The proof is information-theoretic, and hence applies to non-linear codes as well. We also show that under two (practical) relaxations of the problem setting, these lower bounds can be met for both read and download simultaneously.Comment: IEEE Communications Letter
    • …
    corecore