354,530 research outputs found

    MARTE based modeling approach for Partial Dynamic Reconfigurable FPGAs

    Get PDF
    International audienceAs System-on-Chip (SoC) architectures become pivotal for designing embedded systems, the SoC design complexity continues to increase exponentially necessitating the need to find new design methodologies. In this paper we present a novel SoC co-design methodology based on Model Driven Engineering using the MARTE (Modeling and Analysis of Real-time and Embedded Systems) standard. This methodology is utilized to model fine grain reconfigurable architectures such as FPGAs and extends the standard to integrate new features such as Partial Dynamic Reconfiguration supported by modern FPGAs. The goal is to carry out modeling at a high abstraction level expressed in UML (Unified Modeling Language) and following transformations of these models, automatically generate the code necessary for FPGA implementation

    High level modeling of Partially Dynamically Reconfigurable FPGAs based on MDE and MARTE

    Get PDF
    International audienceSystem-on-Chip (SoC) architectures are becoming the preferred solution for implementing modern embedded systems. However their design complexity continues to augment due to the increase in integrated hardware resources requiring new design methodologies and tools. In this paper we present a novel SoC co-design methodology based on aModel Driven Engineering framework while utilizing the MARTE (Modeling and Analysis of Real-time and Embedded Systems) standard. This methodology permits us to model fine grain reconfigurable architectures such as FPGAs and allows to extend the standard for integrating new features such as Partial Dynamic Reconfiguration supported by modern FPGAs. The overall objective is to carry out modeling at a high abstraction level expressed in a graphical language like UML (Unified Modeling Language) and afterwards transformations of these models, automatically generate the necessary specifications required for FPGA implementation

    From MARTE to dynamically reconfigurable FPGAs : Introduction of a control extension in a model based design flow

    Get PDF
    System-on-Chip (SoC) can be considered as a particular case of embedded systems and has rapidly became a de-facto solution for implement- ing these complex systems. However, due to the continuous exponential rise in SoC's design complexity, there is a critical need to find new seamless method- ologies and tools to handle the SoC co-design aspects. This paper addresses this issue and proposes a novel SoC co-design methodology based on Model Driven Engineering (MDE) and the MARTE (Modeling and Analysis of Real-Time and Embedded Systems) standard proposed by OMG (Object Management Group), in order to raise the design abstraction levels. Extensions of this standard have enabled us to move from high level specifications to execution platforms such as reconfigurable FPGAs; and allow to implement the notion of Partial Dy- namic Reconfiguration supported by current FPGAs. The overall objective is to carry out system modeling at a high abstraction level expressed in UML (Unified Modeling Language); and afterwards, transform these high level mod- els into detailed enriched lower level models in order to automatically generate the necessary code for final FPGA synthesis

    From MARTE to Reconfigurable NoCs: A model driven design methodology

    Get PDF
    Due to the continuous exponential rise in SoC's design complexity, there is a critical need to find new seamless methodologies and tools to handle the SoC co-design aspects. We address this issue and propose a novel SoC co-design methodology based on Model Driven Engineering and the MARTE (Modeling and Analysis of Real-Time and Embedded Systems) standard proposed by Object Management Group, to raise the design abstraction levels. Extensions of this standard have enabled us to move from high level specifications to execution platforms such as reconfigurable FPGAs. In this paper, we present a high level modeling approach that targets modern Network on Chips systems. The overall objective: to perform system modeling at a high abstraction level expressed in Unified Modeling Language (UML); and afterwards, transform these high level models into detailed enriched lower level models in order to automatically generate the necessary code for final FPGA synthesis

    A Model based design flow for Dynamic Reconfigurable FPGAs

    Get PDF
    International audienceAs System-on-Chip (SoC) based embedded systems have become a de-facto industry standard, their overall design complexity has increased exponentially in recent years, necessitating the introduction of new seamless methodologies and tools to handle the SoC co-design aspects. This paper presents a novel SoC co-design methodology based on Model Driven Engineering and the MARTE (Modeling and Analysis of Real-Time and Embedded Systems) standard, permitting us to raise the abstraction levels and allows to model fine grain reconfigurable architectures such as FPGAs. Extensions of this methodology have enabled us to integrate new features such as Partial Dynamic Reconfiguration supported by Modern FPGAs. The overall objective is to carry out system modeling at a high abstraction level expressed in a graphical language like UML (Unified Modeling Language) and afterwards transformation of these models, automatically generate the necessary code for FPGA synthesis

    MARTE based design approach for targeting Reconfigurable Architectures

    No full text
    International audienceThis paper demonstrates the use of a model driven design flow for Multiprocessor System on chips (MPSoCs) such as those dedicated to intensive signal processing applications. Due to the continuous exponential rise in SoC's design complexity, there is a critical need to find new seamless methodologies and tools to handle the SoC co-design aspects. This paper addresses this issue and proposes a novel SoC codesign methodology based on Model Driven Engineering (MDE) and the MARTE (Modeling and Analysis of Real-Time and Embedded Systems) standard proposed by OMG (Object Management Group), in order to raise the design abstraction levels. Extensions of this standard have enabled us to move from high level specifications to execution platforms such as reconfigurable FPGAs

    MARTE based design approach for targeting Reconfigurable Architectures

    Get PDF
    International audienceThis paper demonstrates the use of a model driven design flow for Multiprocessor System on chips (MPSoCs) such as those dedicated to intensive signal processing applications. Due to the continuous exponential rise in SoC's design complexity, there is a critical need to find new seamless methodologies and tools to handle the SoC co-design aspects. This paper addresses this issue and proposes a novel SoC codesign methodology based on Model Driven Engineering (MDE) and the MARTE (Modeling and Analysis of Real-Time and Embedded Systems) standard proposed by OMG (Object Management Group), in order to raise the design abstraction levels. Extensions of this standard have enabled us to move from high level specifications to execution platforms such as reconfigurable FPGAs

    An integrated hardware/software design methodology for signal processing systems

    Get PDF
    This paper presents a new methodology for design and implementation of signal processing systems on system-on-chip (SoC) platforms. The methodology is centered on the use of lightweight application programming interfaces for applying principles of dataflow design at different layers of abstraction. The development processes integrated in our approach are software implementation, hardware implementation, hardware-software co-design, and optimized application mapping. The proposed methodology facilitates development and integration of signal processing hardware and software modules that involve heterogeneous programming languages and platforms. As a demonstration of the proposed design framework, we present a dataflow-based deep neural network (DNN) implementation for vehicle classification that is streamlined for real-time operation on embedded SoC devices. Using the proposed methodology, we apply and integrate a variety of dataflow graph optimizations that are important for efficient mapping of the DNN system into a resource constrained implementation that involves cooperating multicore CPUs and field-programmable gate array subsystems. Through experiments, we demonstrate the flexibility and effectiveness with which different design transformations can be applied and integrated across multiple scales of the targeted computing system

    An object-based codesign methodology.

    Get PDF
    The research into Codesign of Hardware and Software stems from the development of embedded systems, on which various systems restrictions are imposed. Typical restrictions can be the overall time (latency) to complete an assigned function and the space/power limits within the system. Although software can be used to undertake most tasks in an embedded system, ASIC (Application Specific Integrated Circuits) hardware components sometimes have to be recruited to meet the system constraints. Designing the restricted embedded system with both software and hardware components in it involves the analysis of not only individual hardware/software components but also their mutual influences. Using co-design principles, the approach is to consider both hardware and software from a coherent viewpoint.This thesis presents the results from our research project in the area of Codesign of Hardware and Software. In this project, we investigated previously published codesign approaches and their methodological supports. The investigation has identified shortcomings and problems with the existing codesign methodologies. A new object-based codesign approach (Co-PARSE) is thus developed in this project, which is supported by successive phases, guidelines, and techniques. This methodology offers a coherent design framework for real-time embedded systems and incorporates the criteria of system performance and hardware cost. Tools have been developed to facilitate the use of the methodology. Within the methodology, a high-level system modeling and specification approach has been developed and formalised in the Co-BSL (Codesign Behavior Specification Language). The means of transforming Co-BSL specifications to C and VHDL implementations is defined, and a library of VHDL components provided. The thesis documents the partitioning approach taken within the methodology and proposes a new multi-layered bus architecture as a basis for more flexible and efficient implementations. A means of simulating the performance characteristics of this architecture under different configurations is provided, and examples of simulation results are presented. A new embedded system (the Radio Data Computing System) is designed and simulated in the Co-PARSE methodology and simulation results analysed. The thesis concludes with an evaluation of the work carried out in the project and proposals for extending the results obtained in future research.The major contributions reported in this thesis can be summarised as follows. First, the unified system specification means has been designed, which is embodied in the Co-BSL. It captures overall dynamic aspects and performance constraints in the system under development. This high-level specification language is independent of implementation and does not bias the designer towards the use of hardware or software components at this early stage. Second, within Co-PARSE, the target architecture of the system under development has been exploited to improve the system performance and at the same time to reduce hardware cost. This novel concept has been realised by the introduction of an asynchronous bus protocol and the multi-layer bus communication structure. Third, in order to evaluate the strength and practicability of the Co-PARSE methodology, an extensive case study has been carried out. The new RDC (Radio Dada Computing) System has been designed in the proposed codesign approach. Codesign phases are subsequently applied and the guidelines and tools that are specially developed in support of the methodology are fully utilized
    corecore