69,077 research outputs found

    Semidefinite programming and eigenvalue bounds for the graph partition problem

    Full text link
    The graph partition problem is the problem of partitioning the vertex set of a graph into a fixed number of sets of given sizes such that the sum of weights of edges joining different sets is optimized. In this paper we simplify a known matrix-lifting semidefinite programming relaxation of the graph partition problem for several classes of graphs and also show how to aggregate additional triangle and independent set constraints for graphs with symmetry. We present an eigenvalue bound for the graph partition problem of a strongly regular graph, extending a similar result for the equipartition problem. We also derive a linear programming bound of the graph partition problem for certain Johnson and Kneser graphs. Using what we call the Laplacian algebra of a graph, we derive an eigenvalue bound for the graph partition problem that is the first known closed form bound that is applicable to any graph, thereby extending a well-known result in spectral graph theory. Finally, we strengthen a known semidefinite programming relaxation of a specific quadratic assignment problem and the above-mentioned matrix-lifting semidefinite programming relaxation by adding two constraints that correspond to assigning two vertices of the graph to different parts of the partition. This strengthening performs well on highly symmetric graphs when other relaxations provide weak or trivial bounds

    Divergences in the Moduli Space Integral and Accumulating Handles in the Infinite-Genus Limit

    Full text link
    The symmetries associated with the closed bosonic string partition function are examined so that the integration region in Teichmuller space can be determined. The conditions on the period matrix defining the fundamental region can be translated to relations on the parameters of the uniformizing Schottky group. The growth of the lower bound for the regularized partition function is derived through integration over a subset of the fundamental region.Comment: 26 pages, DAMTP-R/94/1

    Time-Constrained Temporal Logic Control of Multi-Affine Systems

    Get PDF
    In this paper, we consider the problem of controlling a dynamical system such that its trajectories satisfy a temporal logic property in a given amount of time. We focus on multi-affine systems and specifications given as syntactically co-safe linear temporal logic formulas over rectangular regions in the state space. The proposed algorithm is based on the estimation of time bounds for facet reachability problems and solving a time optimal reachability problem on the product between a weighted transition system and an automaton that enforces the satisfaction of the specification. A random optimization algorithm is used to iteratively improve the solution

    Configurations of Handles and the Classification of Divergences in the String Partition Function

    Full text link
    The divergences that arise in the regularized partition function for closed bosonic string theory in flat space lead to three types of perturbation series expansions, distinguished by their genus dependence. This classification of infinities can be traced to geometrical characteristics of the string worldsheet. Some categories of divergences may be eliminated in string theories formulated on compact manifolds.Comment: 24 pages, DAMTP-R/94/1

    New bounds for the max-kk-cut and chromatic number of a graph

    Full text link
    We consider several semidefinite programming relaxations for the max-kk-cut problem, with increasing complexity. The optimal solution of the weakest presented semidefinite programming relaxation has a closed form expression that includes the largest Laplacian eigenvalue of the graph under consideration. This is the first known eigenvalue bound for the max-kk-cut when k>2k>2 that is applicable to any graph. This bound is exploited to derive a new eigenvalue bound on the chromatic number of a graph. For regular graphs, the new bound on the chromatic number is the same as the well-known Hoffman bound; however, the two bounds are incomparable in general. We prove that the eigenvalue bound for the max-kk-cut is tight for several classes of graphs. We investigate the presented bounds for specific classes of graphs, such as walk-regular graphs, strongly regular graphs, and graphs from the Hamming association scheme
    • …
    corecore