23 research outputs found

    Fast Visualization by Shear-Warp using Spline Models for Data Reconstruction

    Full text link
    This work concerns oneself with the rendering of huge three-dimensional data sets. The target thereby is the development of fast algorithms by also applying recent and accurate volume reconstruction models to obtain at most artifact-free data visualizations. In part I a comprehensive overview on the state of the art in volume rendering is given. Part II is devoted to the recently developed trivariate (linear,) quadratic and cubic spline models defined on symmetric tetrahedral partitions directly obtained by slicing volumetric partitions of a three-dimensional domain. This spline models define piecewise polynomials of total degree (one,) two and three with respect to a tetrahedron, i.e. the local splines have the lowest possible total degree and are adequate for efficient and accurate volume visualization. The following part III depicts in a step by step manner a fast software-based rendering algorithm, called shear-warp. This algorithm is prominent for its ability to generate projections of volume data at real time. It attains the high rendering speed by using elaborate data structures and extensive pre-computation, but at the expense of data redundancy and visual quality of the finally obtained rendering results. However, to circumvent these disadvantages a further development is specified, where new techniques and sophisticated data structures allow combining the fast shear-warp with the accurate ray-casting approach. This strategy and the new data structures not only grant a unification of the benefits of both methods, they even easily admit for adjustments to trade-off between rendering speed and precision. With this further development also the 3-fold data redundancy known from the original shear-warp approach is removed, allowing the rendering of even larger three-dimensional data sets more quickly. Additionally, real trivariate data reconstruction models, as discussed in part II, are applied together with the new ideas to onward the precision of the new volume rendering method, which also lead to a one order of magnitude faster algorithm compared to traditional approaches using similar reconstruction models. In part IV, a hierarchy-based rendering method is developed which utilizes a wavelet decomposition of the volume data, an octree structure to represent the sparse data set, the splines from part II and a new shear-warp visualization algorithm similar to that presented in part III. This thesis is concluded by the results centralized in part V

    B-splines for sparse grids : algorithms and application to higher-dimensional optimization

    Get PDF
    In simulation technology, computationally expensive objective functions are often replaced by cheap surrogates, which can be obtained by interpolation. Full grid interpolation methods suffer from the so-called curse of dimensionality, rendering them infeasible if the parameter domain of the function is higher-dimensional (four or more parameters). Sparse grids constitute a discretization method that drastically eases the curse, while the approximation quality deteriorates only insignificantly. However, conventional basis functions such as piecewise linear functions are not smooth (continuously differentiable). Hence, these basis functions are unsuitable for applications in which gradients are required. One example for such an application is gradient-based optimization, in which the availability of gradients greatly improves the speed of convergence and the accuracy of the results. This thesis demonstrates that hierarchical B-splines on sparse grids are well-suited for obtaining smooth interpolants for higher dimensionalities. The thesis is organized in two main parts: In the first part, we derive new B-spline bases on sparse grids and study their implications on theory and algorithms. In the second part, we consider three real-world applications in optimization: topology optimization, biomechanical continuum-mechanics, and dynamic portfolio choice models in finance. The results reveal that the optimization problems of these applications can be solved accurately and efficiently with hierarchical B-splines on sparse grids.In der Simulationstechnik werden zeitaufwendige Zielfunktionen oft durch einfache Surrogate ersetzt, die durch Interpolation gewonnen werden können. Vollgitter-Interpolationsmethoden leiden unter dem sogenannten Fluch der Dimensionalität, der sie unbrauchbar macht, falls der Parameterbereich der Funktion höherdimensional ist (vier oder mehr Parameter). Dünne Gitter sind eine Diskretisierungsmethode, die den Fluch drastisch lindert und die Approximationsqualität nur leicht verschlechtert. Leider sind konventionelle Basisfunktionen wie die stückweise linearen Funktionen nicht glatt (stetig differenzierbar). Daher sind sie für Anwendungen ungeeignet, in denen Gradienten benötigt werden. Ein Beispiel für eine solche Anwendung ist gradientenbasierte Optimierung, in der die Verfügbarkeit von Gradienten die Konvergenzgeschwindigkeit und die Ergebnisgenauigkeit deutlich verbessert. Diese Dissertation demonstriert, dass hierarchische B-Splines auf dünnen Gittern hervorragend geeignet sind, um glatte Interpolierende für höhere Dimensionalitäten zu erhalten. Die Dissertation ist in zwei Hauptteile gegliedert: Der erste Teil leitet neue B-Spline-Basen auf dünnen Gittern her und untersucht ihre Implikationen bezüglich Theorie und Algorithmen. Der zweite Teil behandelt drei Realwelt-Anwendungen aus der Optimierung: Topologieoptimierung, biomechanische Kontinuumsmechanik und Modelle der dynamischen Portfolio-Wahl in der Finanzmathematik. Die Ergebnisse zeigen, dass die Optimierungsprobleme dieser Anwendungen durch hierarchische B-Splines auf dünnen Gittern genau und effizient gelöst werden können

    Doctor of Philosophy

    Get PDF
    dissertationWhile boundary representations, such as nonuniform rational B-spline (NURBS) surfaces, have traditionally well served the needs of the modeling community, they have not seen widespread adoption among the wider engineering discipline. There is a common perception that NURBS are slow to evaluate and complex to implement. Whereas computer-aided design commonly deals with surfaces, the engineering community must deal with materials that have thickness. Traditional visualization techniques have avoided NURBS, and there has been little cross-talk between the rich spline approximation community and the larger engineering field. Recently there has been a strong desire to marry the modeling and analysis phases of the iterative design cycle, be it in car design, turbulent flow simulation around an airfoil, or lighting design. Research has demonstrated that employing a single representation throughout the cycle has key advantages. Furthermore, novel manufacturing techniques employing heterogeneous materials require the introduction of volumetric modeling representations. There is little question that fields such as scientific visualization and mechanical engineering could benefit from the powerful approximation properties of splines. In this dissertation, we remove several hurdles to the application of NURBS to problems in engineering and demonstrate how their unique properties can be leveraged to solve problems of interest

    Métamorphose de maillage 3D

    Get PDF
    Cette thèse de doctorat aborde spécifiquement le problème de la métamorphose entre différents maillages 3D, qui peut assurer un niveau élevé de qualité pour la séquence de transition, qui devrait être aussi lisse et progressive que possible, cohérente par rapport à la géométrie et la topologie, et visuellement agréable. Les différentes étapes impliquées dans le processus de transformation sont développées dans cette thèse. Nos premières contributions concernent deux approches différentes des paramétrisations: un algorithme de mappage barycentrique basé sur la préservation des rapports de longueur et une technique de paramétrisation sphérique, exploitant la courbure Gaussien. L'évaluation expérimentale, effectuées sur des modèles 3D de formes variées, démontré une amélioration considérable en termes de distorsion maillage pour les deux méthodes. Afin d aligner les caractéristiques des deux modèles d'entrée, nous avons considéré une technique de déformation basée sur la fonction radial CTPS C2a approprié pour déformer le mappage dans le domaine paramétrique et maintenir un mappage valide a travers le processus de mouvement. La dernière contribution consiste d une une nouvelle méthode qui construit un pseudo metamaillage qui évite l'exécution et le suivi des intersections d arêtes comme rencontrées dans l'état-of-the-art. En outre, notre méthode permet de réduire de manière drastique le nombre de sommets normalement nécessaires dans une structure supermesh. Le cadre générale de métamorphose a été intégré dans une application prototype de morphing qui permet à l'utilisateur d'opérer de façon interactive avec des modèles 3D et de contrôler chaque étape du processusThis Ph.D. thesis specifically deals with the issue of metamorphosis of 3D objects represented as 3D triangular meshes. The objective is to elaborate a complete 3D mesh morphing methodology which ensures high quality transition sequences, smooth and gradual, consistent with respect to both geometry and topology, and visually pleasant. Our first contributions concern the two different approaches of parameterization: a new barycentric mapping algorithm based on the preservation of the mesh length ratios, and a spherical parameterization technique, exploiting a Gaussian curvature criterion. The experimental evaluation, carried out on 3D models of various shapes, demonstrated a considerably improvement in terms of mesh distortion for both methods. In order to align the features of the two input models, we have considered a warping technique based on the CTPS C2a radial basis function suitable to deform the models embeddings in the parametric domain maintaining a valid mapping through the entire movement process. We show how this technique has to be adapted in order to warp meshes specified in the parametric domains. A final contribution consists of a novel algorithm for constructing a pseudo-metamesh that avoids the complex process of edge intersections encountered in the state-of-the-art. The obtained mesh structure is characterized by a small number of vertices and it is able to approximate both the source and target shapes. The entire mesh morphing framework has been integrated in an interactive application that allows the user to control and visualize all the stages of the morphing processEVRY-INT (912282302) / SudocSudocFranceF
    corecore