168 research outputs found

    Adaptive Entropy Coder Design Based on the Statistics of Lossless Video Signal

    Get PDF

    High-Efficient Parallel CAVLC Encoders on Heterogeneous Multicore Architectures

    Get PDF
    This article presents two high-efficient parallel realizations of the context-based adaptive variable length coding (CAVLC) based on heterogeneous multicore processors. By optimizing the architecture of the CAVLC encoder, three kinds of dependences are eliminated or weaken, including the context-based data dependence, the memory accessing dependence and the control dependence. The CAVLC pipeline is divided into three stages: two scans, coding, and lag packing, and be implemented on two typical heterogeneous multicore architectures. One is a block-based SIMD parallel CAVLC encoder on multicore stream processor STORM. The other is a component-oriented SIMT parallel encoder on massively parallel architecture GPU. Both of them exploited rich data-level parallelism. Experiments results show that compared with the CPU version, more than 70 times of speedup can be obtained for STORM and over 50 times for GPU. The implementation of encoder on STORM can make a real-time processing for 1080p @30fps and GPU-based version can satisfy the requirements for 720p real-time encoding. The throughput of the presented CAVLC encoders is more than 10 times higher than that of published software encoders on DSP and multicore platforms

    Seminario sullo Standard MPEG-4: utilizzo ed aspetti implementativi

    Get PDF
    Una delle tecnologie chiave che hanno permesso il grande sviluppo della televisione digitale è la compressione video. La tecnologia di codifica video nota come MPEG-2, sviluppata nei primi anni novanta, è diventata lo standard di trasmissione DTV (Digital TV) sia satellitare sia terrestre in quasi tutti i paesi del mondo. Da allora la velocità dei microprocessori e le capacità di memoria dei dispositivi hardware per la codifica e la decodifica sono migliorate significativamente rendendo possibile lo sviluppo e l’implementazione di algoritmi di codifica innovativi in grado di abbattere significativamente i limiti di compressione dello standard MPEG-2. Tali innovazioni, sfociate nel 2003 nello standard MPEG-4 AVC (Advanced Video Coding), non hanno permesso di mantenere la compatibilità all’indietro con l’MPEG-2, e questo ha inizialmente costituito un limite alla loro introduzione nei sistemi di trasmissione DTV. Tuttavia, negli ultimi anni la codifica MPEG-4 AVC si è diffusa rapidamente, è stata adottata dal progetto DVB, recentemente dall’ATSC, ed è lo standard di codifica nell’IPTV. L’obiettivo di questo seminario, che si articola in due giornate, è quello di presentare lo standard di codifica MPEG-4 AVC con particolare attenzione agli aspetti implementativi del livello di codifica video.2008-11-18Sardegna Ricerche, Edificio 2, Località Piscinamanna 09010 Pula (CA) - ItaliaSeminario sullo Standard MPEG-4: utilizzo ed aspetti implementativ

    Low power context adaptive variable length encoder in H.264

    Get PDF
    The adoption of digital TV, DVD video and Internet streaming led to the development of Video compression. H.264/AVC is the industry standard delivering highly efficient and reliable video compression. In this Video compression standard, H.264/AVC one of the technical developments adopted is the Context adaptive entropy coding schemes. This thesis developed a complete VHDL behavioral model of a variable length encoder. A synthesizable hardware description is then developed for components of the variable length encoder using Synopsys tools. Many implementations were focused on density and speed to reduce the hardware cost and improve quality but with higher power consumption. Low power consumption of an IC leads to lower heat dissipation and thereby reduces the need for bigger heat sinking devices. Reducing the need for heat sinking devices can provide lot of advantages to the manufacturers in terms of cost and size of the end product. Focus towards smaller area with higher power consumption may not be appropriate for some end products that need thinner mechanical enclosures because even if the design has smaller area it needs a bigger heat sink thereby making the enclosures bigger. This thesis therefore aimed at low power consumption without compromising much on the area. The designed architecture enables real-time processing for QCIF and CIF frames with 60-fps using 100MHz clock. The resultant hardware power is 1.4mW at 100MHz using 65nm technology. The total logic gate count is 32K gates

    Efficient reconfigurable architectures for 3D medical image compression

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Recently, the more widespread use of three-dimensional (3-D) imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and ultrasound (US) have generated a massive amount of volumetric data. These have provided an impetus to the development of other applications, in particular telemedicine and teleradiology. In these fields, medical image compression is important since both efficient storage and transmission of data through high-bandwidth digital communication lines are of crucial importance. Despite their advantages, most 3-D medical imaging algorithms are computationally intensive with matrix transformation as the most fundamental operation involved in the transform-based methods. Therefore, there is a real need for high-performance systems, whilst keeping architectures exible to allow for quick upgradeability with real-time applications. Moreover, in order to obtain efficient solutions for large medical volumes data, an efficient implementation of these operations is of significant importance. Reconfigurable hardware, in the form of field programmable gate arrays (FPGAs) has been proposed as viable system building block in the construction of high-performance systems at an economical price. Consequently, FPGAs seem an ideal candidate to harness and exploit their inherent advantages such as massive parallelism capabilities, multimillion gate counts, and special low-power packages. The key achievements of the work presented in this thesis are summarised as follows. Two architectures for 3-D Haar wavelet transform (HWT) have been proposed based on transpose-based computation and partial reconfiguration suitable for 3-D medical imaging applications. These applications require continuous hardware servicing, and as a result dynamic partial reconfiguration (DPR) has been introduced. Comparative study for both non-partial and partial reconfiguration implementation has shown that DPR offers many advantages and leads to a compelling solution for implementing computationally intensive applications such as 3-D medical image compression. Using DPR, several large systems are mapped to small hardware resources, and the area, power consumption as well as maximum frequency are optimised and improved. Moreover, an FPGA-based architecture of the finite Radon transform (FRAT)with three design strategies has been proposed: direct implementation of pseudo-code with a sequential or pipelined description, and block random access memory (BRAM)- based method. An analysis with various medical imaging modalities has been carried out. Results obtained for image de-noising implementation using FRAT exhibits promising results in reducing Gaussian white noise in medical images. In terms of hardware implementation, promising trade-offs on maximum frequency, throughput and area are also achieved. Furthermore, a novel hardware implementation of 3-D medical image compression system with context-based adaptive variable length coding (CAVLC) has been proposed. An evaluation of the 3-D integer transform (IT) and the discrete wavelet transform (DWT) with lifting scheme (LS) for transform blocks reveal that 3-D IT demonstrates better computational complexity than the 3-D DWT, whilst the 3-D DWT with LS exhibits a lossless compression that is significantly useful for medical image compression. Additionally, an architecture of CAVLC that is capable of compressing high-definition (HD) images in real-time without any buffer between the quantiser and the entropy coder is proposed. Through a judicious parallelisation, promising results have been obtained with limited resources. In summary, this research is tackling the issues of massive 3-D medical volumes data that requires compression as well as hardware implementation to accelerate the slowest operations in the system. Results obtained also reveal a significant achievement in terms of the architecture efficiency and applications performance.Ministry of Higher Education Malaysia (MOHE), Universiti Tun Hussein Onn Malaysia (UTHM) and the British Counci

    Resource-Constrained Low-Complexity Video Coding for Wireless Transmission

    Get PDF

    Mengenal pasti tahap pengetahuan pelajar tahun akhir Ijazah Sarjana Muda Kejuruteraan di KUiTTHO dalam bidang keusahawanan dari aspek pengurusan modal

    Get PDF
    Malaysia ialah sebuah negara membangun di dunia. Dalam proses pembangunan ini, hasrat negara untuk melahirkan bakal usahawan beijaya tidak boleh dipandang ringan. Oleh itu, pengetahuan dalam bidang keusahawanan perlu diberi perhatian dengan sewajarnya; antara aspek utama dalam keusahawanan ialah modal. Pengurusan modal yang tidak cekap menjadi punca utama kegagalan usahawan. Menyedari hakikat ini, kajian berkaitan Pengurusan Modal dijalankan ke atas 100 orang pelajar Tahun Akhir Kejuruteraan di KUiTTHO. Sampel ini dipilih kerana pelajar-pelajar ini akan menempuhi alam pekeijaan di mana mereka boleh memilih keusahawanan sebagai satu keijaya. Walau pun mereka bukanlah pelajar dari jurusan perniagaan, namun mereka mempunyai kemahiran dalam mereka cipta produk yang boleh dikomersialkan. Hasil dapatan kajian membuktikan bahawa pelajar-pelajar ini berminat dalam bidang keusahawanan namun masih kurang pengetahuan tentang pengurusan modal terutamanya dalam menentukan modal permulaan, pengurusan modal keija dan caracara menentukan pembiayaan kewangan menggunakan kaedah jualan harian. Oleh itu, satu garis panduan Pengurusan Modal dibina untuk memberi pendedahan kepada mereka

    CAL Dataflow Components for an MPEG RVC AVC Baseline Encoder

    Get PDF
    In this paper, an efficient H.264/AVC baseline encoder, described in RVC-CAL actor language, is introduced. The main aim of the paper is twofold: a) to demonstrate the flexibility and ease that is provided by RVC-CAL, which allows for efficient implementation of the presented encoder, and b) to shed light on the advantages that can be brought into the RVC framework by including such encoding tools. The main modules of the designed encoder include: Inter Frame Prediction (Motion Estimation/Compensation), Intra Frame Prediction, and Entropy Coding. Descriptions of the designed modules, accompanied with RVC-CAL design issues are provided. A comparison between different development approaches is also provided. The obtained results show that specifying complex video codecs (e.g. H.264/AVC encoder) using RVC-CAL followed by automatic translation into HDL, which is achievable by the tools that support the standard, results in more efficient HW implementation compared to the traditional HW design flow. A discussion that explains the reasons behind such results concludes the pape

    Hardware Software Synthesis of a H.264 / AVC Baseline Profile Decoder

    Get PDF
    The latest video compression standard is a joint effort between ITU and MPEG known as H.264/AVC. As with any video compression standard the H.264/AVC uses computationally intensive algorithms to maximize performance. During decompression these algorithms must be applied in real-time, processing 30 frames a second. This can be done in software, specialized hardware, or a combination of the two. Software solutions allow for maximum portability and ease of design, but General Purpose Processors (GPP) can not take full advantage of the parallelizable algorithms that the H.264 decoder is based upon. Specialized hardware solutions, on the other hand, allow concurrent data and instruction paths, but do not offer a high level of abstraction for cross platform development. Recent work by Xilinx has resulted in the advent of the MicroBlaze soft-processor that is a stand alone microcontroller built from an FPGA. The MicroBlaze provides a specialized hardware medium to run software on-chip with VHDL entities. The goal of this thesis was to model and simulate a software hardware hybrid H.264/AVC Baseline Profile decoder using VHDL and a soft-processor. It was proposed to divide all highly sequential calculations (run-length and CALVC decoding) and control data flow into software and perform the remaining calculations (prediction, inverse transform, inverse quantization, etc.) in hardware modules. The software runs on Xilinx\u27 s MicroBlaze soft-processor and the hardware was designed using VHDL. A major advantage of soft-processors over GPP\u27s, is that it hardware instantiations reside on-chip with the processor. The software and MicroBlaze soft-processor were simulated in a test bench and the results proved that the MicroBlaze could not handle the encoded bit-stream in real-time. For this reason the hardware interface and hardware decoder were never fully implemented. The scope of the thesis covers the H.264 Baseline Profile standard, MicroBlaze processor, the implemented software solution, and the proposed hardware counterpart

    Improved lossless coding algorithm in H.264/AVC based on hierarchical intraprediction and coding-mode selection

    Get PDF
    Author name used in this publication: Li-Li Wang2011-2012 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
    corecore