1,998 research outputs found

    Strong many-particle localization and quantum computing with perpetually coupled qubits

    Full text link
    We demonstrate the onset of strong on-site localization in a one-dimensional many-particle system. The localization is obtained by constructing, in an explicit form, a bounded sequence of on-site energies that eliminates resonant hopping between both nearest and remote sites. This sequence leads to quasi-exponential decay of the single-particle transition amplitude. It also leads to strong localization of stationary many-particle states in a finite-length chain. For an {\it infinite} chain, we instead study the time during which {\it all} many-particle states remain strongly localized. We show that, for any number of particles, this time exceeds the reciprocal frequency of nearest-neighbor hopping by a factor ∼105\sim 10^5 already for a moderate bandwidth of on-site energies. The proposed energy sequence is robust with respect to small errors. The formulation applies to fermions as well as perpetually coupled qubits. The results show viability of quantum computing with time-independent qubit coupling.Comment: 20 pages, 10 figure

    Fundamental Limits of Low-Density Spreading NOMA with Fading

    Full text link
    Spectral efficiency of low-density spreading non-orthogonal multiple access channels in the presence of fading is derived for linear detection with independent decoding as well as optimum decoding. The large system limit, where both the number of users and number of signal dimensions grow with fixed ratio, called load, is considered. In the case of optimum decoding, it is found that low-density spreading underperforms dense spreading for all loads. Conversely, linear detection is characterized by different behaviors in the underloaded vs. overloaded regimes. In particular, it is shown that spectral efficiency changes smoothly as load increases. However, in the overloaded regime, the spectral efficiency of low- density spreading is higher than that of dense spreading

    Random Pilot and Data Access in Massive MIMO for Machine-type Communications

    Full text link
    A massive MIMO system, represented by a base station with hundreds of antennas, is capable of spatially multiplexing many devices and thus naturally suited to serve dense crowds of wireless devices in emerging applications, such as machine-type communications. Crowd scenarios pose new challenges in the pilot-based acquisition of channel state information and call for pilot access protocols that match the intermittent pattern of device activity. A joint pilot assignment and data transmission protocol based on random access is proposed in this paper for the uplink of a massive MIMO system. The protocol relies on the averaging across multiple transmission slots of the pilot collision events that result from the random access process. We derive new uplink sum rate expressions that take pilot collisions, intermittent device activity, and interference into account. Simplified bounds are obtained and used to optimize the device activation probability and pilot length. A performance analysis indicates how performance scales as a function of the number of antennas and the transmission slot duration

    Interference Mitigation in Frequency Hopping Ad Hoc Networks

    Get PDF
    Radio systems today exhibit a degree of flexibility that was unheard of only a few years ago. Software-defined radio architectures have emerged that are able to service large swathes of spectrum, covering up to several GHz in the UHF bands. This dissertation investigates interference mitigation techniques in frequency hopping ad hoc networks that are capable of exploiting the frequency agility of software-defined radio platforms

    Exact solution for the dynamical decoupling of a qubit with telegraph noise

    Full text link
    We study the dissipative dynamics of a qubit that is afflicted by classical random telegraph noise and it is subject to dynamical decoupling. We derive exact formulas for the qubit dynamics at arbitrary working points in the limit of infinitely strong control pulses (bang-bang control) and we investigate in great detail the efficiency of the dynamical decoupling techniques both for Gaussian and non-Gaussian (slow) noise at qubit pure dephasing and at optimal point. We demonstrate that control sequences can be successfully implemented as diagnostic tools to infer spectral proprieties of a few fluctuators interacting with the qubit. The analysis is extended in order to include the effect of noise in the pulses and we give upper bounds on the noise levels that can be tolerated in the pulses while still achieving efficient dynamical decoupling performance
    • …
    corecore