1,200 research outputs found

    Semi-algebraic colorings of complete graphs

    Get PDF
    We consider mm-colorings of the edges of a complete graph, where each color class is defined semi-algebraically with bounded complexity. The case m=2m = 2 was first studied by Alon et al., who applied this framework to obtain surprisingly strong Ramsey-type results for intersection graphs of geometric objects and for other graphs arising in computational geometry. Considering larger values of mm is relevant, e.g., to problems concerning the number of distinct distances determined by a point set. For p3p\ge 3 and m2m\ge 2, the classical Ramsey number R(p;m)R(p;m) is the smallest positive integer nn such that any mm-coloring of the edges of KnK_n, the complete graph on nn vertices, contains a monochromatic KpK_p. It is a longstanding open problem that goes back to Schur (1916) to decide whether R(p;m)=2O(m)R(p;m)=2^{O(m)}, for a fixed pp. We prove that this is true if each color class is defined semi-algebraically with bounded complexity. The order of magnitude of this bound is tight. Our proof is based on the Cutting Lemma of Chazelle {\em et al.}, and on a Szemer\'edi-type regularity lemma for multicolored semi-algebraic graphs, which is of independent interest. The same technique is used to address the semi-algebraic variant of a more general Ramsey-type problem of Erd\H{o}s and Shelah

    Induced Ramsey-type theorems

    Full text link
    We present a unified approach to proving Ramsey-type theorems for graphs with a forbidden induced subgraph which can be used to extend and improve the earlier results of Rodl, Erdos-Hajnal, Promel-Rodl, Nikiforov, Chung-Graham, and Luczak-Rodl. The proofs are based on a simple lemma (generalizing one by Graham, Rodl, and Rucinski) that can be used as a replacement for Szemeredi's regularity lemma, thereby giving much better bounds. The same approach can be also used to show that pseudo-random graphs have strong induced Ramsey properties. This leads to explicit constructions for upper bounds on various induced Ramsey numbers.Comment: 30 page

    A tabu search heuristic for the Equitable Coloring Problem

    Get PDF
    The Equitable Coloring Problem is a variant of the Graph Coloring Problem where the sizes of two arbitrary color classes differ in at most one unit. This additional condition, called equity constraints, arises naturally in several applications. Due to the hardness of the problem, current exact algorithms can not solve large-sized instances. Such instances must be addressed only via heuristic methods. In this paper we present a tabu search heuristic for the Equitable Coloring Problem. This algorithm is an adaptation of the dynamic TabuCol version of Galinier and Hao. In order to satisfy equity constraints, new local search criteria are given. Computational experiments are carried out in order to find the best combination of parameters involved in the dynamic tenure of the heuristic. Finally, we show the good performance of our heuristic over known benchmark instances

    Graph removal lemmas

    Get PDF
    The graph removal lemma states that any graph on n vertices with o(n^{v(H)}) copies of a fixed graph H may be made H-free by removing o(n^2) edges. Despite its innocent appearance, this lemma and its extensions have several important consequences in number theory, discrete geometry, graph theory and computer science. In this survey we discuss these lemmas, focusing in particular on recent improvements to their quantitative aspects.Comment: 35 page

    Partitioning random graphs into monochromatic components

    Full text link
    Erd\H{o}s, Gy\'arf\'as, and Pyber (1991) conjectured that every rr-colored complete graph can be partitioned into at most r1r-1 monochromatic components; this is a strengthening of a conjecture of Lov\'asz (1975) in which the components are only required to form a cover. An important partial result of Haxell and Kohayakawa (1995) shows that a partition into rr monochromatic components is possible for sufficiently large rr-colored complete graphs. We start by extending Haxell and Kohayakawa's result to graphs with large minimum degree, then we provide some partial analogs of their result for random graphs. In particular, we show that if p(27lognn)1/3p\ge \left(\frac{27\log n}{n}\right)^{1/3}, then a.a.s. in every 22-coloring of G(n,p)G(n,p) there exists a partition into two monochromatic components, and for r2r\geq 2 if p(rlognn)1/rp\ll \left(\frac{r\log n}{n}\right)^{1/r}, then a.a.s. there exists an rr-coloring of G(n,p)G(n,p) such that there does not exist a cover with a bounded number of components. Finally, we consider a random graph version of a classic result of Gy\'arf\'as (1977) about large monochromatic components in rr-colored complete graphs. We show that if p=ω(1)np=\frac{\omega(1)}{n}, then a.a.s. in every rr-coloring of G(n,p)G(n,p) there exists a monochromatic component of order at least (1o(1))nr1(1-o(1))\frac{n}{r-1}.Comment: 27 pages, 2 figures. Appears in Electronic Journal of Combinatorics Volume 24, Issue 1 (2017) Paper #P1.1
    corecore