34 research outputs found

    New Blind Block Synchronization for Transceivers Using Redundant Precoders

    Get PDF
    This paper studies the blind block synchronization problem in block transmission systems using linear redundant precoders (LRP). Two commonly used LRP systems, namely, zero padding (ZP) and cyclic prefix (CP) systems, are considered in this paper. In particular, the block synchronization problem in CP systems is a broader version of timing synchronization problem in the popular orthogonal frequency division multiplexing (OFDM) systems. The proposed algorithms exploit the rank deficiency property of the matrix composed of received blocks when the block synchronization is perfect and use a parameter called repetition index which can be chosen as any positive integer. Theoretical results suggest advantages in blind block synchronization performances when using a large repetition index. Furthermore, unlike previously reported algorithms, which require a large amount of received data, the proposed methods, with properly chosen repetition indices, guarantee correct block synchronization in absence of noise using only two received blocks in ZP systems and three in CP systems. Computer simulations are conducted to evaluate the performances of the proposed algorithms and compare them with previously reported algorithms. Simulation results not only verify the capability of the proposed algorithms to work with limited received data but also show significant improvements in the block synchronization error rate performance of the proposed algorithms over previously reported algorithms

    A Generalized Algorithm for Blind Channel Identification with Linear Redundant Precoders

    Get PDF
    It is well known that redundant filter bank precoders can be used for blind identification as well as equalization of FIR channels. Several algorithms have been proposed in the literature exploiting trailing zeros in the transmitter. In this paper we propose a generalized algorithm of which the previous algorithms are special cases. By carefully choosing system parameters, we can jointly optimize the system performance and computational complexity. Both time domain and frequency domain approaches of channel identification algorithms are proposed. Simulation results show that the proposed algorithm outperforms the previous ones when the parameters are optimally chosen, especially in time-varying channel environments. A new concept of generalized signal richness for vector signals is introduced of which several properties are studied

    Initial results on an MMSE precoding and equalisation approach to MIMO PLC channels

    Get PDF
    This paper addresses some initial experiments using polynomial matrix decompositions to construct MMSE precoders and equalisers for MIMO power line communications (PLC) channels. The proposed scheme is based on a Wiener formulation based on polynomial matrices, and recent results to design and implement such systems with polynomial matrix tools. Applied to the MIMO PLC channel, the strong spectral dynamics of the PLC system together with the long impulse responses contained in the MIMO system result in problems, such that diagonlisation and spectral majorisation is mostly achieved in bands of high energy, while low-energy bands can resist any diagonalisation efforts. We introduce the subband approach in order to deal with this problem. A representative example using a simulated MIMO PLC channel is presented

    Design of optimal equalizers and precoders for MIMO channels

    Get PDF
    Channel equalization has been extensively studied as a method of combating ISI and ICI for high speed MIMO data communication systems. This dissertation focuses on optimal channel equalization in the presence of non-white observation noises with unknown PSD but bounded power-norm. A worst-case approach to optimal design of channel equalizers leads to an equivalent optimal H-infinity filtering problem for the MIMO communication systems. An explicit design algorithm is derived which not only achieves the zero-forcing (ZF) condition, but also minimizes the RMS error between the transmitted symbols and the received symbols. The second part of this dissertation investigates the design of optimal precoders which minimize the bit error rate (BER) subject to a fixed transmit-power constraint for the multiple antennas downlink communication channels under the perfect reconstruction (PR) condition. The closed form solutions are derived and an efficient design algorithm is proposed. The performance evaluations indicate that the optimal precoder design for multiple antennas communication systems proposed herein is an attractive/reasonable alternative to the existing precoder design techniques

    Massive MIMO for Next Generation Wireless Systems

    Full text link
    Multi-user Multiple-Input Multiple-Output (MIMO) offers big advantages over conventional point-to-point MIMO: it works with cheap single-antenna terminals, a rich scattering environment is not required, and resource allocation is simplified because every active terminal utilizes all of the time-frequency bins. However, multi-user MIMO, as originally envisioned with roughly equal numbers of service-antennas and terminals and frequency division duplex operation, is not a scalable technology. Massive MIMO (also known as "Large-Scale Antenna Systems", "Very Large MIMO", "Hyper MIMO", "Full-Dimension MIMO" & "ARGOS") makes a clean break with current practice through the use of a large excess of service-antennas over active terminals and time division duplex operation. Extra antennas help by focusing energy into ever-smaller regions of space to bring huge improvements in throughput and radiated energy efficiency. Other benefits of massive MIMO include the extensive use of inexpensive low-power components, reduced latency, simplification of the media access control (MAC) layer, and robustness to intentional jamming. The anticipated throughput depend on the propagation environment providing asymptotically orthogonal channels to the terminals, but so far experiments have not disclosed any limitations in this regard. While massive MIMO renders many traditional research problems irrelevant, it uncovers entirely new problems that urgently need attention: the challenge of making many low-cost low-precision components that work effectively together, acquisition and synchronization for newly-joined terminals, the exploitation of extra degrees of freedom provided by the excess of service-antennas, reducing internal power consumption to achieve total energy efficiency reductions, and finding new deployment scenarios. This paper presents an overview of the massive MIMO concept and contemporary research.Comment: Final manuscript, to appear in IEEE Communications Magazin

    Optimal channel equalization for filterbank transceivers in presence of white noise

    Get PDF
    Filterbank transceivers are widely employed in data communication networks to cope with inter-symbol-interference (ISI) through the use of redundancies. This dissertation studies the design of the optimal channel equalizer for both time-invariant and time-varying channels, and wide-sense stationary (WSS) and possible non-stationary white noise processes. Channel equalization is investigated via the filterbank transceivers approach. All perfect reconstruction (PR) or zero-forcing (ZF) receiver filterbanks are parameterized in an affine form, which eliminate completely the ISI. The optimal channel equalizer is designed through minimization of the mean-squared-error (MSE) between the detected signals and the transmitted signals. Our main results show that the optimal channel equalizer has the form of state estimators, and is a modified Kalman filter. The results in this dissertation are applicable to discrete wavelet multitone (DWMT) systems, multirate transmultiplexers, orthogonal frequency division multiplexing (OFDM), and direct-sequence/spread-spectrum (DS/SS) based code division multiple access (CDMA) networks. Design algorithms for the optimal channel equalizers are developed for different channel models, and white noise processes, and simulation examples are worked out to illustrate the proposed design algorithms

    Performance Analysis and Mitigation Techniques for I/Q-Corrupted OFDM Systems

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) has become a widely adopted modulation technique in modern communications systems due to its multipath resilience and low implementation complexity. The direct conversion architecture is a popular candidate for low-cost, low-power, fully integrated transceiver designs. One of the inevitable problems associated with analog signal processing in direct conversion involves the mismatches in the gain and phases of In-phase (I) and Quadrature-phase (Q) branches. Ideally, the I and Q branches of the quadrature mixer will have perfectly matched gains and are orthogonal in phase. Due to imperfect implementation of the electronics, so called I/Q imbalance emerges and creates interference between subcarriers which are symmetrically apart from the central subcarrier. With practical imbalance levels, basic transceivers fail to maintain the sufficient image rejection, which in turn can cause interference with the desired transmission. Such an I/Q distortion degrades the systems performance if left uncompensated. Moreover, the coexistence of I/Q imbalance and other analog RF imperfections with digital baseband and higher layer functionalities such as multiantenna transmission and radio resource management, reduce the probability of successful transmission. Therefore, mitigation of I/Q imbalance is an essential substance in designing and implementing modern communications systems, while meeting required performance targets and quality of service. This thesis considers techniques to compensate and mitigate I/Q imbalance, when combined with channel estimation, multiantenna transmission, transmission power control, adaptive modulation and multiuser scheduling. The awareness of the quantitative relationship between transceiver parameters and system parameters is crucial in designing and dimensioning of modern communications systems. For this purpose, analytical models to evaluate the performance of an I/Q distorted system are considered

    Equalization with oversampling in multiuser CDMA systems

    Get PDF
    Some of the major challenges in the design of new-generation wireless mobile systems are the suppression of multiuser interference (MUI) and inter-symbol interference (ISI) within a single user created by the multipath propagation. Both of these problems were addressed successfully in a recent design of A Mutually Orthogonal Usercode-Receiver (AMOUR) for asynchronous or quasisynchronous code division multiple access (CDMA) systems. AMOUR converts a multiuser CDMA system into parallel single-user systems regardless of the multipath and guarantees ISI mitigation, irrespective of the channel locations. However, the noise amplification at the receiver can be significant in some multipath channels. In this paper, we propose to oversample the received signal as a way of improving the performance of AMOUR systems. We design Fractionally Spaced AMOUR (FSAMOUR) receivers with integral and rational amounts of oversampling and compare their performance with the conventional method. An important point that is often overlooked in the design of zero-forcing channel equalizers is that sometimes, they are not unique. This becomes especially significant in multiuser applications where, as we will show, the nonuniqueness is practically guaranteed. We exploit this flexibility in the design of AMOUR and FSAMOUR receivers and achieve noticeable improvements in performance

    New OFDM schemes based on orthogonal transforms for mobile communications systems :

    Get PDF
    PhD ThesisIn this thesis, two new orthogonal frequency division multiplexing (OFDM) systems are presented. The first scheme proposes a new OFDM system transceiver based on the C-transform, which is termed C-OFDM. Over multipath channels, the C-OFDM achieves 10 dB signal-to-noise ratio (SNR) gain at 10−4 bit-error-rate (BER), in comparison to the OFDM that based on the is discrete cosine transform (DCT-OFDM) and the conventional OFDM schemes. It also reduces the peak-to-average power ratio (PAPR) of the OFDM signal by about 1 dB and in some cases up to 3 dB. In the second scheme, a new fast, orthogonal X-transform is produced. The proposed X-transform is then used in a new OFDM named X-OFDM to greatly reduce the complexity, the PAPR and the BER. The proposed scheme achieves around 15 dB SNR gain in comparison to the conventional OFDM at 10−4 BER and reduces the average PAPR (over 105 OFDM symbol) by about 6 dB for N =1024 subcarriers. Furthermore, in this study, the X-transform is utilized to produce a new Alamouti space-time OFDM (ST-OFDM). The proposed ST-X-OFDM scheme reduces the transmitter complexity and achieves important SNR gain over the conventional ST-OFDM systems. The BER performance of the proposed schemes in the presence of solid-state power amplifiers (SSPAs) is also investigated analytically and by simulation. It shows that the X-OFDM is resilient to the SSPAs nonlinear distortion whereas the C-OFDM may lead to BER impairment in the presence of the SSPA. Furthermore, a coding technique to mitigate the sensitivity of the COFDM scheme to the SSPA is also proposed in this study. In this research, mathematical models for the proposed C-OFDM, XOFDM and ST-X-OFDM, which tightly match the simulation results over a diverse range of transmission scenarios and mapping schemes, are also derived. In addition, the BER performance of the proposed COFDM and X-OFDM schemes in the presence of the carrier frequency offset (CFO), with and without frequency synchronization algorithm, are also investigated. The proposed C-OFDM and X-OFDM schemes are more sensitive to the CFO than the conventional schemes. However, when frequency synchronization algorithm is used, both the proposed schemes retain their significant BER improvement in comparison to the conventional schemes.Ministry of Higher Education and Scientific Research (MOHSR), Iraq and to the Iraqi cultural attach- London for supporting me financially during my study in England
    corecore