8,018 research outputs found

    A study of pattern recovery in recurrent correlation associative memories

    Get PDF
    In this paper, we analyze the recurrent correlation associative memory (RCAM) model of Chiueh and Goodman. This is an associative memory in which stored binary memory patterns are recalled via an iterative update rule. The update of the individual pattern-bits is controlled by an excitation function, which takes as its arguement the inner product between the stored memory patterns and the input patterns. Our contribution is to analyze the dynamics of pattern recall when the input patterns are corrupted by noise of a relatively unrestricted class. We make three contributions. First, we show how to identify the excitation function which maximizes the separation (the Fisher discriminant) between the uncorrupted realization of the noisy input pattern and the remaining patterns residing in the memory. Moreover, we show that the excitation function which gives maximum separation is exponential when the input bit-errors follow a binomial distribution. Our second contribution is to develop an expression for the expectation value of bit-error probability on the input pattern after one iteration. We show how to identify the excitation function which minimizes the bit-error probability. However, there is no closed-form solution and the excitation function must be recovered numerically. The relationship between the excitation functions which result from the two different approaches is examined for a binomial distribution of bit-errors. The final contribution is to develop a semiempirical approach to the modeling of the dynamics of the RCAM. This provides us with a numerical means of predicting the recall error rate of the memory. It also allows us to develop an expression for the storage capacity for a given recall error rate

    Neural Distributed Autoassociative Memories: A Survey

    Full text link
    Introduction. Neural network models of autoassociative, distributed memory allow storage and retrieval of many items (vectors) where the number of stored items can exceed the vector dimension (the number of neurons in the network). This opens the possibility of a sublinear time search (in the number of stored items) for approximate nearest neighbors among vectors of high dimension. The purpose of this paper is to review models of autoassociative, distributed memory that can be naturally implemented by neural networks (mainly with local learning rules and iterative dynamics based on information locally available to neurons). Scope. The survey is focused mainly on the networks of Hopfield, Willshaw and Potts, that have connections between pairs of neurons and operate on sparse binary vectors. We discuss not only autoassociative memory, but also the generalization properties of these networks. We also consider neural networks with higher-order connections and networks with a bipartite graph structure for non-binary data with linear constraints. Conclusions. In conclusion we discuss the relations to similarity search, advantages and drawbacks of these techniques, and topics for further research. An interesting and still not completely resolved question is whether neural autoassociative memories can search for approximate nearest neighbors faster than other index structures for similarity search, in particular for the case of very high dimensional vectors.Comment: 31 page

    Quantum Pattern Retrieval by Qubit Networks with Hebb Interactions

    Get PDF
    Qubit networks with long-range interactions inspired by the Hebb rule can be used as quantum associative memories. Starting from a uniform superposition, the unitary evolution generated by these interactions drives the network through a quantum phase transition at a critical computation time, after which ferromagnetic order guarantees that a measurement retrieves the stored memory. The maximum memory capacity p of these qubit networks is reached at a memory density p/n=1.Comment: To appear in Physical Review Letter

    High Performance Associative Memories and Structured Weight Dilution

    Get PDF
    Copyright SpringerThe consequences of two techniques for symmetrically diluting the weights of the standard Hopfield architecture associative memory model, trained using a non-Hebbian learning rule, are examined. This paper reports experimental investigations into the effect of dilution on factors such as: pattern stability and attractor performance. It is concluded that these networks maintain a reasonable level of performance at fairly high dilution rates

    An associative memory for the on-line recognition and prediction of temporal sequences

    Full text link
    This paper presents the design of an associative memory with feedback that is capable of on-line temporal sequence learning. A framework for on-line sequence learning has been proposed, and different sequence learning models have been analysed according to this framework. The network model is an associative memory with a separate store for the sequence context of a symbol. A sparse distributed memory is used to gain scalability. The context store combines the functionality of a neural layer with a shift register. The sensitivity of the machine to the sequence context is controllable, resulting in different characteristic behaviours. The model can store and predict on-line sequences of various types and length. Numerical simulations on the model have been carried out to determine its properties.Comment: Published in IJCNN 2005, Montreal, Canad

    Delay-independent stability in bidirectional associative memory networks

    Get PDF
    It is shown that if the neuronal gains are small compared with the synaptic connection weights, then a bidirectional associative memory network with axonal signal transmission delays converges to the equilibria associated with exogenous inputs to the network. Both discrete and continuously distributed delays are considered; the asymptotic stability is global in the state space of neuronal activations and also is independent of the delays
    corecore