12,111 research outputs found

    Sublinear Time and Space Algorithms for Correlation Clustering via Sparse-Dense Decompositions

    Get PDF
    We present a new approach for solving (minimum disagreement) correlation clustering that results in sublinear algorithms with highly efficient time and space complexity for this problem. In particular, we obtain the following algorithms for nn-vertex (+/)(+/-)-labeled graphs GG: -- A sublinear-time algorithm that with high probability returns a constant approximation clustering of GG in O(nlog2n)O(n\log^2{n}) time assuming access to the adjacency list of the (+)(+)-labeled edges of GG (this is almost quadratically faster than even reading the input once). Previously, no sublinear-time algorithm was known for this problem with any multiplicative approximation guarantee. -- A semi-streaming algorithm that with high probability returns a constant approximation clustering of GG in O(nlogn)O(n\log{n}) space and a single pass over the edges of the graph GG (this memory is almost quadratically smaller than input size). Previously, no single-pass algorithm with o(n2)o(n^2) space was known for this problem with any approximation guarantee. The main ingredient of our approach is a novel connection to sparse-dense graph decompositions that are used extensively in the graph coloring literature. To our knowledge, this connection is the first application of these decompositions beyond graph coloring, and in particular for the correlation clustering problem, and can be of independent interest

    Deterministic polynomial-time approximation algorithms for partition functions and graph polynomials

    Full text link
    In this paper we show a new way of constructing deterministic polynomial-time approximation algorithms for computing complex-valued evaluations of a large class of graph polynomials on bounded degree graphs. In particular, our approach works for the Tutte polynomial and independence polynomial, as well as partition functions of complex-valued spin and edge-coloring models. More specifically, we define a large class of graph polynomials C\mathcal C and show that if pCp\in \cal C and there is a disk DD centered at zero in the complex plane such that p(G)p(G) does not vanish on DD for all bounded degree graphs GG, then for each zz in the interior of DD there exists a deterministic polynomial-time approximation algorithm for evaluating p(G)p(G) at zz. This gives an explicit connection between absence of zeros of graph polynomials and the existence of efficient approximation algorithms, allowing us to show new relationships between well-known conjectures. Our work builds on a recent line of work initiated by. Barvinok, which provides a new algorithmic approach besides the existing Markov chain Monte Carlo method and the correlation decay method for these types of problems.Comment: 27 pages; some changes have been made based on referee comments. In particular a tiny error in Proposition 4.4 has been fixed. The introduction and concluding remarks have also been rewritten to incorporate the most recent developments. Accepted for publication in SIAM Journal on Computatio

    Distributed local approximation algorithms for maximum matching in graphs and hypergraphs

    Full text link
    We describe approximation algorithms in Linial's classic LOCAL model of distributed computing to find maximum-weight matchings in a hypergraph of rank rr. Our main result is a deterministic algorithm to generate a matching which is an O(r)O(r)-approximation to the maximum weight matching, running in O~(rlogΔ+log2Δ+logn)\tilde O(r \log \Delta + \log^2 \Delta + \log^* n) rounds. (Here, the O~()\tilde O() notations hides polyloglog Δ\text{polyloglog } \Delta and polylog r\text{polylog } r factors). This is based on a number of new derandomization techniques extending methods of Ghaffari, Harris & Kuhn (2017). As a main application, we obtain nearly-optimal algorithms for the long-studied problem of maximum-weight graph matching. Specifically, we get a (1+ϵ)(1+\epsilon) approximation algorithm using O~(logΔ/ϵ3+polylog(1/ϵ,loglogn))\tilde O(\log \Delta / \epsilon^3 + \text{polylog}(1/\epsilon, \log \log n)) randomized time and O~(log2Δ/ϵ4+logn/ϵ)\tilde O(\log^2 \Delta / \epsilon^4 + \log^*n / \epsilon) deterministic time. The second application is a faster algorithm for hypergraph maximal matching, a versatile subroutine introduced in Ghaffari et al. (2017) for a variety of local graph algorithms. This gives an algorithm for (2Δ1)(2 \Delta - 1)-edge-list coloring in O~(log2Δlogn)\tilde O(\log^2 \Delta \log n) rounds deterministically or O~((loglogn)3)\tilde O( (\log \log n)^3 ) rounds randomly. Another consequence (with additional optimizations) is an algorithm which generates an edge-orientation with out-degree at most (1+ϵ)λ\lceil (1+\epsilon) \lambda \rceil for a graph of arboricity λ\lambda; for fixed ϵ\epsilon this runs in O~(log6n)\tilde O(\log^6 n) rounds deterministically or O~(log3n)\tilde O(\log^3 n ) rounds randomly

    Adapting Local Sequential Algorithms to the Distributed Setting

    Get PDF
    It is a well known fact that sequential algorithms which exhibit a strong "local" nature can be adapted to the distributed setting given a legal graph coloring. The running time of the distributed algorithm will then be at least the number of colors. Surprisingly, this well known idea was never formally stated as a unified framework. In this paper we aim to define a robust family of local sequential algorithms which can be easily adapted to the distributed setting. We then develop new tools to further enhance these algorithms, achieving state of the art results for fundamental problems. We define a simple class of greedy-like algorithms which we call orderless-local algorithms. We show that given a legal c-coloring of the graph, every algorithm in this family can be converted into a distributed algorithm running in O(c) communication rounds in the CONGEST model. We show that this family is indeed robust as both the method of conditional expectations and the unconstrained submodular maximization algorithm of Buchbinder et al. [Niv Buchbinder et al., 2015] can be expressed as orderless-local algorithms for local utility functions - Utility functions which have a strong local nature to them. We use the above algorithms as a base for new distributed approximation algorithms for the weighted variants of some fundamental problems: Max k-Cut, Max-DiCut, Max 2-SAT and correlation clustering. We develop algorithms which have the same approximation guarantees as their sequential counterparts, up to a constant additive epsilon factor, while achieving an O(log^* n) running time for deterministic algorithms and O(epsilon^{-1}) running time for randomized ones. This improves exponentially upon the currently best known algorithms

    Algorithms for the minimum sum coloring problem: a review

    Get PDF
    The Minimum Sum Coloring Problem (MSCP) is a variant of the well-known vertex coloring problem which has a number of AI related applications. Due to its theoretical and practical relevance, MSCP attracts increasing attention. The only existing review on the problem dates back to 2004 and mainly covers the history of MSCP and theoretical developments on specific graphs. In recent years, the field has witnessed significant progresses on approximation algorithms and practical solution algorithms. The purpose of this review is to provide a comprehensive inspection of the most recent and representative MSCP algorithms. To be informative, we identify the general framework followed by practical solution algorithms and the key ingredients that make them successful. By classifying the main search strategies and putting forward the critical elements of the reviewed methods, we wish to encourage future development of more powerful methods and motivate new applications

    Approximation Algorithms for Partially Colorable Graphs

    Get PDF
    Graph coloring problems are a central topic of study in the theory of algorithms. We study the problem of partially coloring partially colorable graphs. For alpha = alpha |V| such that the graph induced on S is k-colorable. Partial k-colorability is a more robust structural property of a graph than k-colorability. For graphs that arise in practice, partial k-colorability might be a better notion to use than k-colorability, since data arising in practice often contains various forms of noise. We give a polynomial time algorithm that takes as input a (1 - epsilon)-partially 3-colorable graph G and a constant gamma in [epsilon, 1/10], and colors a (1 - epsilon/gamma) fraction of the vertices using O~(n^{0.25 + O(gamma^{1/2})}) colors. We also study natural semi-random families of instances of partially 3-colorable graphs and partially 2-colorable graphs, and give stronger bi-criteria approximation guarantees for these family of instances
    corecore