61 research outputs found

    Current Control for Synchronous Motor Drives: Direct Discrete-Time Pole-Placement Design

    Get PDF
    This paper deals with discrete-time models and current control methods for synchronous motors with a magnetically salient rotor structure, such as interior permanent-magnet synchronous motors and synchronous reluctance motors (SyRMs). The dynamic performance of current controllers based on the continuous-time motor model is limited, particularly if the ratio of the sampling frequency to the fundamental frequency is low. An exact closed-form hold-equivalent discrete motor model is derived. The zero-order hold of the stator-voltage input is modeled in stationary coordinates, where it physically is. An analytical discretetime pole-placement design method for two-degrees-of-freedom proportional–integral current control is proposed. The proposed method is easy to apply: only the desired closed-loop bandwidth and the three motor parameters (R_s,L_d,L_q) are required. The robustness of the proposed current control design against parameter errors is analyzed. Thecontroller is experimentally verified usinga 6.7-kW SyRM drive.Peer reviewe

    Extended active disturbance rejection controller

    Get PDF
    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow

    Current control for IPMSM drives: Direct discrete-time pole-placement design

    Get PDF
    This paper deals with discrete-time models and current control methods for synchronous motors with a magnetically anisotropic rotor structure, such as interior permanent-magnet synchronous motors (IPMSMs) and synchronous reluctance motors (SyRMs). Dynamic performance of current controllers based on continuous-time models is limited, especially if the ratio of the sampling frequency to the fundamental frequency is low. An exact closed-form hold-equivalent discrete motor model is derived. The zero-order hold of the stator-voltage input is modeled in stationary coordinates, where it physically is. An analytical discrete-time pole-placement design method for a two-degree-of-freedom state-space current controller with an integral action is proposed. The proposed method is easy to apply: only the desired closed-loop bandwidth and the three motor parameters (R_s, L_d, L_q) are required. The robustness of the proposed current control design against parameter errors is analyzed. The controller is experimentally verified using a 6.7-kW SyRM drive.Peer reviewe

    Extended Active Disturbance Rejection Controller

    Get PDF
    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow

    Discrete-Time Current Control of Synchronous Motor Drives

    Get PDF
    The aim of this thesis is to analyze discrete-time models and current control of synchronous motors with a magnetically anisotropic rotor structure, such as interior permanent-magnet synchronous motors (IPMSMs) and synchronous reluctance motors (SyRMs). Current regulators in most modern electrical drives are implemented in digital processors. Discretization of continuous-time controllers using the Euler and Tustin approximations, also known as the emulation-based design, is the most common approach. This design gives satisfactory results when the ratio between the sampling and fundamental frequencies remains high. The performance of the emulation-based design deteriorates as the frequency ratio becomes small. For this reason, the controller based on the exact discrete-time model of the machine is preferred. If the exact expressions are computationally too demanding, approximate expressions (series expansions) could be used instead. A hold equivalent discrete-time model with the effects of the zero-order hold (ZOH) and a sampler is studied in both the stator and rotor coordinates. A two-degrees-of-freedom (2DOF) state-space controller is used with the gains based on the exact discrete-time model of the motor. The results are compared with the emulation- and series expansions (of the exact discrete-time model) based controllers. The robustness of these methods against parameter errors is analyzed and the current controllers are also investigated by performing simulations and experiments on a 6.7-kW SyRM drive

    Wireless Sensor Integrated Tool for Characterization of Machining Dynamics in Milling

    Get PDF
    A first step towards practical sensing in the machining environment is the development and use of low cost, reliable sensors. Historically, the ability to record in-process data at an end mill tool tip has been limited by the sensor location. Often, these sensors are mounted on the material workpiece or the machine spindle at significant physical distance from the cutting process. Of specific interest are the problems of tool chatter which causes limitations to productivity and part quality. Although tool chatter is a substantial issue in machining, it remains an open research topic. In this research, a sensor integrated cutting tool holder is developed to specifically analyze the problems related to tool chatter. With the sensor integrated cutting tool holder, the signal to noise ratio is higher than traditional sensing methods. Because of the higher sensitivity, new data analysis methods can be explored. Specifically, the sensor is used in conjunction with a data dependent linear predictive coding algorithm to demonstrate effective prediction of chatter frequencies from stable cutting

    Segway driver parameter estimation and its use for optimizing the control algorithm

    Get PDF
    Táto práca sa zaoberá vývojom, testovaním a implementáciou adaptívneho riadiaceho systému pre dvojkolesové samobalancujúce vozidlo. Adaptácia parametrov vozidla sa uskutoční na základe parametrov vodiča. Parametre sústavy sa nemerajú priamo, ale sú odhadované na základe priebehu stavových premenných a odozvy sústavy. Medzi odhadované parametre patrí hmotnosť a poloha ťažiska vodiča. Cieľom práce je zabezpečiť adaptáciu jazdných vlastností vozidla k rôznym vodičom s rôznou hmotnosťou, kvôli zlepšeniu stability vozidla. Táto práca je pokračovaním predchádzajúcich projektov z roku 2011 a 2015.This thesis deals with development, verification and implementation of an adaptive control system on a two-wheeled self-balancing vehicle that based on the driver's parameters alters its behaviour. The parameters are not obtained by direct measurement but estimated based on the evolution of state variables and the system's response. The estimated parameters include driver's mass and height of his or her centre of gravity. The goal of this thesis is to verify the idea of an adaptation of the system's dynamical properties to different users while ensuring better stability. This thesis is the continuation of earlier projects finished in 2011 and 2015.

    A Data-Driven Frequency-Domain Approach for Robust Controller Design via Convex Optimization

    Get PDF
    The objective of this dissertation is to develop data-driven frequency-domain methods for designing robust controllers through the use of convex optimization algorithms. Many of today's industrial processes are becoming more complex, and modeling accurate physical models for these plants using first principles may be impossible. With the increased developments in the computing world, large amounts of measured data can be easily collected and stored for processing purposes. Data can also be collected and used in an on-line fashion. Thus it would be very sensible to make full use of this data for controller design, performance evaluation, and stability analysis. The design methods imposed in this work ensure that the dynamics of a system are captured in an experiment and avoids the problem of unmodeled dynamics associated with parametric models. The devised methods consider robust designs for both linear-time-invariant (LTI) single-input-single-output (SISO) systems and certain classes of nonlinear systems. In this dissertation, a data-driven approach using the frequency response function of a system is proposed for designing robust controllers with H∞ performance. Necessary and sufficient conditions are derived for obtaining H∞ performance while guaranteeing the closed-loop stability of a system. A convex optimization algorithm is implemented to obtain the controller parameters which ensure system robustness; the controller is robust with respect to the frequency-dependent uncertainties of the frequency response function. For a certain class of nonlinearities, the proposed method can be used to obtain a best-linear-approximation with an associated frequency dependent uncertainty to guarantee the stability and performance for the underlying linear system that is subject to nonlinear distortions. The concepts behind these design methods are then used to devise necessary and sufficient conditions for ensuring the closed-loop stability of systems with sector-bounded nonlinearities. The conditions are simple convex feasibility constraints which can be used to stabilize systems with multi-model uncertainty. Additionally, a method is proposed for obtaining H∞ performance for an approximate model (i.e., describing function) of a sector-bounded nonlinearity. This work also proposes several data-driven methods for designing robust fixed-structure controllers with H∞ performance. One method considers the solution to a non-convex problem, while another method convexifies the problem and implements an iterative algorithm to obtain the local solution (which can also consider H2 performance). The effectiveness of the proposed method(s) is illustrated by considering several case studies that require robust controllers for achieving the desired performance. The main applicative work in this dissertation is with respect to a power converter control system at the European Organization for Nuclear Research (CERN) (which is used to control the current in a magnet to produce the desired field in controlling particle trajectories in accelerators). The proposed design methods are implemented in order to satisfy the challenging performance specifications set by the application while guaranteeing the system stability and robustness using data-driven design strategies

    Element and system design for active and passive vibration isolation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, February 2005.Includes bibliographical references (p. 277-294).This thesis focusses on broadband vibration isolation, with an emphasis on control of absolute payload motion for ultra-precision instruments such as the MIT/Caltech Laser-Interferometric Gravitational Wave Observatory (LIGO), which is designed to measure spatial strains on the order of 10-²¹. We develop novel passive elements and control strategies as well as a framework for concurrent design of the passive and active elements of single-stage and multi-stage isolation systems. In many applications, it is difficult to construct passive isolation systems compliant enough to achieve specifications on low-frequency ground transmission without introducing hysteresis as well as high-frequency transmission resonances. We develop and test a compliant support that employs a post-buckled structure in con- junction with a compliant spring to attain a low-frequency, low-static-sag mount in a compact package with a large range of travel and very clean dynamics. Most passive damping techniques increase ground transmission at high frequency, but tuned-mass dampers are decoupled from the ground. We explore the tuned-mass damper as a passive realization of the skyhook damper, obtain the optimal designs for multiple-SDOF systems of dampers, propose the concept of a multi-DOF damper, and show that MDOF dampers that couple translational and rotational motion have the potential to provide performance many times better than that traditional tuned-mass dampers. Active control can be used to improve low-frequency performance, but high-gain control can amplify sensor and actuator noise or cause instability. We study several control strategies for uncertain plants with high-order dynamics.(cont.) In particular, we develop a novel control strategy, "model-reaching" adaptive control, that drives the system onto a dynamic manifold defined directly in terms of the states of the target. The method can be used to robustly increase the apparent compliance of an isolation mount and maintain a -40 dB/decade roll-off above the resulting corner frequency.by Lei Zuo.Ph.D
    corecore