39 research outputs found

    Ground-based synthetic aperture radar (GBSAR) interferometry for deformation monitoring

    Get PDF
    Ph. D ThesisGround-based synthetic aperture radar (GBSAR), together with interferometry, represents a powerful tool for deformation monitoring. GBSAR has inherent flexibility, allowing data to be collected with adjustable temporal resolutions through either continuous or discontinuous mode. The goal of this research is to develop a framework to effectively utilise GBSAR for deformation monitoring in both modes, with the emphasis on accuracy, robustness, and real-time capability. To achieve this goal, advanced Interferometric SAR (InSAR) processing algorithms have been proposed to address existing issues in conventional interferometry for GBSAR deformation monitoring. The proposed interferometric algorithms include a new non-local method for the accurate estimation of coherence and interferometric phase, a new approach to selecting coherent pixels with the aim of maximising the density of selected pixels and optimizing the reliability of time series analysis, and a rigorous model for the correction of atmospheric and repositioning errors. On the basis of these algorithms, two complete interferometric processing chains have been developed: one for continuous and the other for discontinuous GBSAR deformation monitoring. The continuous chain is able to process infinite incoming images in real time and extract the evolution of surface movements through temporally coherent pixels. The discontinuous chain integrates additional automatic coregistration of images and correction of repositioning errors between different campaigns. Successful deformation monitoring applications have been completed, including three continuous (a dune, a bridge, and a coastal cliff) and one discontinuous (a hillside), which have demonstrated the feasibility and effectiveness of the presented algorithms and chains for high-accuracy GBSAR interferometric measurement. Significant deformation signals were detected from the three continuous applications and no deformation from the discontinuous. The achieved results are justified quantitatively via a defined precision indicator for the time series estimation and validated qualitatively via a priori knowledge of these observing sites.China Scholarship Council (CSC), Newcastle Universit

    Multi-technique approach to rockfall monitoring in the Montserrat massif (Catalonia, NE Spain)

    Get PDF
    Montserrat Mountain is located near Barcelona in Catalonia, in the northeast of Spain, and its massif is formed by conglomerate interleaved by siltstone/sandstone with steep slopes very prone to rockfalls. The increasing number of visitors in the monastery area, reaching 2.4 million per year, has highlighted the risk derived from rockfalls for this building area and also for the terrestrial accesses, both roads and the rack railway. A risk mitigation plan has been launched, and its first phase during 2014-2016 has been focused largely on testing several monitoring techniques for their later implementation. The results of the pilot tests, performed as a development from previous sparse experiences and data, are presented together with the first insights obtained. These tests combine four monitoring techniques under different conditions of continuity in space and time domains, which are: displacement monitoring with Ground-based Synthetic Aperture Radar and characterization at slope scale, with an extremely non-uniform atmospheric phase screen due to the stepped topography and atmosphere stratification; Terrestrial Laser Scanner surveys quantifying the frequency of small or even previously unnoticed rockfalls, and monitoring rock block centimetre scale displacements; the monitoring of rock joints implemented through a wireless sensor network with an ad hoc design of ZigBee loggers developed by ICGC; and, finally, monitoring singular rock needles with Total Station.Peer ReviewedPostprint (author's final draft

    Design and implementation of an SDR-based multi-frequency ground-based SAR system

    Get PDF
    Synthetic Aperture Radar (SAR) has proven a valuable tool in the monitoring of the Earth, either at a global or local scales. SAR is a coherent radar system able to image extended areas with high resolution, and finds applications in many areas such as forestry, agriculture, mining, structure inspection or security operations. Although space-borne SAR systems can image extended areas, their main limitation is the long revisit times, which are not suitable for applications where the target experiments rapid changes, in the scale of minutes to few days. GBSAR systems have proven useful to fill this revisit time gap by imaging relatively small areas continuously, with extensions usually smaller than a few square kilometers. Ground Based SAR (GBSAR) systems have been used extensively for the monitoring of slope instability, and are a common tool in the mining sector. The development of the GBSAR is relatively recent, and various developments have taken place since the 2000s, transitioning from the usage of Vector Network Analyzers (VNAs) to custom radar cores tailored for this application. This transition is accompanied by a reduction in cost, but at the same time is accompanied by a loss of operational flexibility. Specifically, most GBSAR sensors now operate at a single frequency, losing the value of the multi-band operation that VNAs provided. This work is motivated by the idea that it is worth to use the value of multi-frequency GBSAR measurements, while maintaining a limited system cost. In order to implement a GBSAR with these characteristics, it is realized that Software Defined Radio (SDR) devices are a good option for fast and flexible implementation of broadband transceivers. This thesis details the design and implementation process of an SDR-based Frequency Modulated Continuous Wave (FMCW) GBSAR system from the ground up, presenting the main issues related with the usage of the most common SDR analog architecture, the Zero-IF transceiver. The main problem is determined to be the behavior of spurs related to IQ imbalances of the analog transceiver with the FMCW demodulation process. Two effective techniques to overcome these issues, the Super Spatial Variant Apodization (SSVA) and the Short Time Fourier Transform (STFT) signal reconstruction techniques, are implemented and tested. The thesis also deals with the digital implementation of the signal generator and digital receiver, which are implemented on top of an RF Network-on-Chip (RFNoC) architecture in the SDR Field Programmable Gate Array (FPGA). Another important aspect of this work is the development of an radiofrequency front-end that extends the capabilities of the SDR, implementing filtering, amplification, leakage mitigation and up-conversion to X-band. Finally, a set of test campaigns is described, in which the operation of the system is verified and the value of multi-frequency GBSAR observations is shown.El radar d'obertura sintètica (SAR) ha demostrat ser una eina valuosa en el monitoratge de la Terra, sigui a escala global o local. El SAR és un sistema de radar coherent capaç d’obtenir imatges de zones extenses amb alta resolució i té aplicacions en moltes àrees com la silvicultura, l’agricultura, la mineria, la inspecció d’estructures o les operacions de seguretat. Tot i que els sistemes SAR embarcats en plataformes orbitals poden obtenir imatges d'àrees extenses, la seva principal limitació és el temps de revisita, que no són adequats per a aplicacions on l'objectiu experimenta canvis ràpids, en una escala de minuts a pocs dies. Els sistemes GBSAR han demostrat ser útils per omplir aquesta bretxa de temps, obtenint imatges d'àrees relativament petites de manera contínua, amb extensions generalment inferiors a uns pocs quilòmetres quadrats. Els sistemes SAR terrestres (GBSAR) s’han utilitzat àmpliament per al control de la inestabilitat de talussos i esllavissades i són una eina comuna al sector miner. El desenvolupament del GBSAR és relativament recent i s’han produït diversos desenvolupaments des de la dècada de 2000, passant de l’ús d’analitzadors de xarxes vectorials (VNA) a nuclis de radar personalitzats i adaptats a aquesta aplicació. Aquesta transició s’acompanya d’una reducció del cost, però al mateix temps d’una pèrdua de flexibilitat operativa. Concretament, la majoria dels sensors GBSAR funcionen a una única freqüència, perdent el valor de l’operació en múltiples bandes que proporcionaven els VNA. Aquesta tesi està motivada per la idea de recuperar el valor de les mesures GBSAR multifreqüència, mantenint un cost del sistema limitat. Per tal d’implementar un GBSAR amb aquestes característiques, s’adona que els dispositius de ràdio definida per software (SDR) són una bona opció per a la implementació ràpida i flexible dels transceptors de banda ampla. Aquesta tesi detalla el procés de disseny i implementació d’un sistema GBSAR d’ona contínua modulada en freqüència (FMCW) basat en la tecnologia SDR, presentant els principals problemes relacionats amb l’ús de l’arquitectura analògica de SDR més comuna, el transceptor Zero-IF. Es determina que el problema principal és el comportament dels espuris relacionats amb el balanç de les cadenes de fase i quadratura del transceptor analògic amb el procés de desmodulació FMCW. S’implementen i comproven dues tècniques efectives per minimitzar aquests problemes basades en la reconstrucció de la senyal contaminada per espuris: la tècnica anomenada Super Spatial Variant Apodization (SSVA) i una tècnica basada en la transformada de Fourier amb finestra (STFT). La tesi també tracta la implementació digital del generador de senyal i del receptor digital, que s’implementen sobre una arquitectura RF Network-on-Chip (RFNoC). Un altre aspecte important d’aquesta tesi és el desenvolupament d’un front-end de radiofreqüència que amplia les capacitats de la SDR, implementant filtratge, amplificació, millora de l'aïllament entre transmissió i recepció i conversió a banda X. Finalment, es descriu un conjunt de campanyes de prova en què es verifica el funcionament del sistema i es mostra el valor de les observacions GBSAR multifreqüència

    Geodetic and Remote-Sensing Sensors for Dam Deformation Monitoring

    Get PDF
    In recent years, the measurement of dam displacements has benefited from a great improvement of existing technology, which has allowed a higher degree of automation. This has led to data collection with an improved temporal and spatial resolution. Robotic total stations and GNSS (Global Navigation Satellite System) techniques, often in an integrated manner, may provide efficient solutions for measuring 3D displacements on precise locations on the outer surfaces of dams. On the other hand, remote-sensing techniques, such as terrestrial laser scanning, ground-based SAR (synthetic aperture radar) and satellite differential interferometric SAR offer the chance to extend the observed region to a large portion of a structure and its surrounding areas, integrating the information that is usually provided in a limited number of in-situ control points. The design and implementation of integrated monitoring systems have been revealed as a strategic solution to analyze different situations in a spatial and temporal context. Research devoted to the optimization of data processing tools has evolved with the aim of improving the accuracy and reliability of the measured deformations. The analysis of the observed data for the interpretation and prediction of dam deformations under external loads has been largely investigated on the basis of purely statistical or deterministic methods. The latter may integrate observation from geodetic, remote-sensing and geotechnical/structural sensors with mechanical models of the dam structure. In this paper, a review of the available technologies for dam deformation monitoring is provided, including those sensors that are already applied in routinary operations and some experimental solutions. The aim was to support people who are working in this field to have a complete view of existing solutions, as well as to understand future directions and trends

    Deformation measurement and monitoring with Ground-Based SAR

    Get PDF
    The Ground-Based Synthetic Aperture Radar (GB-SAR) is a relatively new technique, which in the last ten years has gained interest as deformation measurement and monitoring tool. The GB-SAR technique is based on an imaging radar-based sensor, which o ers high sensitivity to small displacements, in the region of sub-millimetres to millimetres, long-range measurements, which can work up to some kilometres, and massive deformation measurement capability. These features confer to the GB-SAR technique interesting advantages with respect to other point-wise deformation measurement techniques. The process of estimating deformation from the GB-SAR data is not straightforward: it requires complex data processing and analysis tools. This dissertation is focused on these tools, covering the whole deformation estimation process. This thesis collects the main research results achieved on this topic during my work at the Active Remote Sensing Unit of the Institute of Geomatics. Two di erent approaches for measuring deformation with GB-SAR data are described and discussed. The irst one is the interferometric approach, based on the exploitation of the phase component of the GB-SAR data, which is the commonly used GB-SAR method. The second one is a non-interferometric approach, which exploits the amplitude component of the GB-SAR data, o ering an interesting alternative way to exploit the GB-SAR data. This dissertation has two main objectives. The first one is presenting, step by step, a complete interferometric GB-SAR procedure for deformation measuring and monitoring. The second one is presenting two new algorithms, which represent the most innovative part of this thesis. The first algorithm faces the phase unwrapping problem, providing an automatic solution for detecting and correcting unwrapping errors, which is called 2+1D phase unwrapping. The second algorithm is the base of the above mentioned non- interferometric approach, which overcomes some of the most critical limitation of GB-SAR interferometry, at the expense of getting less precise deformation estimates. The dissertation is divided in 6 chapters. The first one is the introduction, while the second one provides an overview of GB-SAR interferometry, introducing the main aspects that are the basics of the subsequent chapters. Chapter 3 describes a complete GB-SAR processing chain. Chapters 4 and 5 contain the most original part of the dissertation, i.e. the 2D+1 phase unwrapping algorithm, and the non-interferometric approach. Finally, in Chapter 6 the conclusions are discussed and further research is proposed.El radar terrestre d’obertura sintètica (GB-SAR) és una tècnica relativament nova que, en els últims deu anys, ha guanyat interès com a eina per a mesurar i monitorar deformacions. La tècnica GB-SAR es basa en un sistema radar amb capacitat per proporcionar imatges, que ofereix una alta sensibilitat a petits desplaçaments, d’ordre mil·limètric o submil·limètric, que és capaç de mesurar a llargues distàncies (alguns km) i que té una alta capacitat per fer mesures massives. Aquestes característiques donen a la tècnica interessants avantatges respecte a altres tècniques clàssiques de mesura de deformacions, típicament basades en mesures puntuals. Derivar mesures de deformació a partir de dades GB-SAR no és un procés senzill, ja que requereix uns procediments complexos de processat i anàlisi de dades. Aquesta tesi es centra en aquests processos. Aquesta tesi recull alguns dels resultats més destacats de la investigació que he desenvolupat sobre aquest tema a la unitat de Teledetecció Activa de l'Institut de Geomàtica. Al llarg del document es descriuen dues aproximacions diferents per mesurar deformacions amb GB-SAR. Una es basa en la explotació de la tècnica de la interferometria, és a dir explotant la component de la fase de les imatges GB-SAR: és la tècnica GB-SAR usada habitualment. La segona, anomenada tècnica no-interferomètrica, es basa en la component de l’amplitud de les dades GB-SAR i ofereix una interessant alternativa a la primera. La tesi acompleix dos objectius principals. En primer lloc presenta un procediment complet per la mesura i monitoratge de deformacions mitjançant interferometria GB-SAR. En segon lloc, descriu dos nous algorismes que resolen problemes específics de la interferometria clàssica aplicada al GB-SAR i que representen la part més innovadora d’aquesta tesi. El primer algorisme aborda un dels problemes oberts de la interferometria, el phase unwrapping, proposant un mètode automàtic per detectar-ne i corregir-ne els errors. El segon algorisme proposa un nou mètode per a l'explotació de les dades GB-SAR per mesurar deformacions sense utilitzar la interferometria. La estructura de la tesi consisteix en sis capítols. Després de la introducció, el Capítol 2 proporciona una visió general de la interferometria GB-SAR, introduint els conceptes principals utilitzats en la tesi. En el tercer capítol es descriu una cadena de processament basada en GB-SAR interferomètric. Els capítols quart i cinquè contenen la part més original de la tesi: l'algorisme de phase unwrapping i el mètode no-interferomètric per la mesura de deformacions. Finalment, es discuteixen les conclusions principals i es proposen futures línies d’investigació

    Remote Sensing for Landslide Investigations: An Overview of Recent Achievements and Perspectives

    Get PDF
    Landslides represent major natural hazards, which cause every year significant loss of lives and damages to buildings, properties and lifelines. In the last decades, a significant increase in landslide frequency took place, in concomitance to climate change and the expansion of urbanized areas. Remote sensing techniques represent a powerful tool for landslide investigation: applications are traditionally divided into three main classes, although this subdivision has some limitations and borders are sometimes fuzzy. The first class comprehends techniques for landslide recognition, i.e., the mapping of past or active slope failures. The second regards landslide monitoring, which entails both ground deformation measurement and the analysis of any other changes along time (e.g., land use, vegetation cover). The third class groups methods for landslide hazard analysis and forecasting. The aim of this paper is to give an overview on the applications of remote-sensing techniques for the three categories of landslide investigations, focusing on the achievements of the last decade, being that previous studies have already been exhaustively reviewed in the existing literature. At the end of the paper, a new classification of remote-sensing techniques that may be pertinently adopted for investigating specific typologies of soil and rock slope failures is proposed

    Association of Sensing Techniques with a Designed ICT Architecture in the ISTIMES Project: Application Example with the Monitoring of the Musmeci Bridge

    Get PDF
    International audienceThis work gives a brief description of the main activities and outcomes of the Integrated System for Transport Infrastructures surveillance and Monitoring by Electromagnetic Sensing (ISTIMES) project, which aimed at designing and implementing a system able to couple the capabilities of long-term monitoring and quick damage assessment of the critical transport infrastructures. This was performed thanks to the integrated use of the novel and state of art concepts of Earth observation, ground-based sensing techniques and ICT architecture. The paper will give a brief outline of the main results of the project by referring in particular to the demonstration activities at the test bed of the ÒMusmeciî Bridge in Potenza, Southern Italy

    Radar interferometry techniques for the study of ground subsidence phenomena: a review of practical issues through cases in Spain

    Get PDF
    Subsidence related to multiple natural and human-induced processes affects an increasing number of areas worldwide. Although this phenomenon may involve surface deformation with 3D displacement components, negative vertical movement, either progressive or episodic, tends to dominate. Over the last decades, differential SAR interferometry (DInSAR) has become a very useful remote sensing tool for accurately measuring the spatial and temporal evolution of surface displacements over broad areas. This work discusses the main advantages and limitations of addressing active subsidence phenomena by means of DInSAR techniques from an end-user point of view. Special attention is paid to the spatial and temporal resolution, the precision of the measurements, and the usefulness of the data. The presented analysis is focused on DInSAR results exploitation of various ground subsidence phenomena (groundwater withdrawal, soil compaction, mining subsidence, evaporite dissolution subsidence, and volcanic deformation) with different displacement patterns in a selection of subsidence areas in Spain. Finally, a cost comparative study is performed for the different techniques applied.The different research areas included in this paper has been supported by the projects: CGL2005-05500-C02, CGL2008-06426-C01-01/BTE, AYA2 010-17448, IPT-2011-1234-310000, TEC-2008-06764, ACOMP/2010/082, AGL2009-08931/AGR, 2012GA-LC-036, 2003-03-4.3-I-014, CGL2006-05415, BEST-2011/225, CGL2010-16775, TEC2011-28201, 2012GA-LC-021 and the Banting Postdoctoral Fellowship to PJG
    corecore