112 research outputs found

    Simulation and Optimisation of SiGe MOSFETs

    Get PDF
    This research project is concerned with the development of methodology for simulating advanced SiGe MOSFETs using commercial simulators, the calibration of simulators against higher level Monte Carlo simulation results and real device measurements, and the application of simulation tools in the design of next generation p- channel devices. The methodology for the modelling and simulation of SiGe MOSFET devices is outlined. There are many simulation approaches widely used to simulate SiGe devices, such as Monte Carlo, hydrodynamic, energy transport, and drift diffusion. Different numerical techniques including finite difference, finite box and finite element methods, may be used in the simulators. The Si0.8Ge0.2 p-MOSFETs fabricated especially for high-field transport studies and the Si0.64Ge0.36 p-channel MOSFETs fabricated at Warwick and Southampton Universities with a CMOS compatible process in varying gate lengths were calibrated and investigated. Enhanced low field mobility in SiGe layers compared to Si control devices was observed. The results indicated that the potential of velocity overshoot effects for SiGe p-MOSFETs was considerably higher than Si counterparts, promising higher performance in the former at equal gate lengths at ultra-small devices. The effects of punchthrough stopper, undoped buffers and delta doping for SiGe p-MOSFETs were analysed systematically. It was found that the threshold voltage roll off might be reduced considerably by using an appropriate punchthrough stopper. In order to adjust the threshold voltage for digital CMOS applications, p-type delta doping was required for n+-polysilicon gate p-MOSFET. The use of delta doping made the threshold voltage roll off a more serious issue, therefore delta doping should be used with caution. The two-dimensional process simulator TSUPREM-4 and the two-dimensional device simulator MEDICI were employed to optimise and design Si/SiGe hybrid CMOS. The output of TSUPREM-4 was transferred automatically to the MEDICI device simulator. This made the simulation results more realistic. For devices at small gate length, lightly doped drain (LDD) structures were required. They would decrease the lateral subdiffusion and allow threshold voltage roll off to be minimised. These structures, however, would generally reduce drain current due to an increase in the series resistance of the drain region. Further consideration must be made of these trade-offs. Comparison between drift diffusion and hydrodynamic simulation results for SiGe p-MOSFETs were presented for the first time, with transport parameters extracted from our in-house full-band hole Monte Carlo transport simulator. It was shown that while drift diffusion and hydrodynamic simulations provided a reasonable estimation of the I-V characteristics for Si devices, the same could not be said for aggressively scaled SiGe devices. The resulting high fields at the source end of the devices meant that nonequilibrium transport effects were significant. Therefore for holes, models based on an isotropic carrier temperature were no longer appropriate, as it was shown by analysing the tensor components of the carrier temperature obtained from Monte Carlo simulation. Two-dimensional drift diffusion and Monte Carlo simulations of well-tempered Si p-MOSFETs with gate lengths of 25 and 50 nm were performed. By comparing Monte Carlo simulations with carefully calibrated drift diffusion results, it was found that nonequilibrium transport was important for understanding the high current device characteristics in sub 0.1 mum p-MOSFETs. The well-tempered devices showed better characteristics than the conventional SiGe devices. Both threshold voltage roll off and the subthreshold slope were acceptable although the effective channel length of this device was reduced from 50 nm to 25 nm. In order to adjust the threshold voltage for the digital CMOS applications, p-type delta doping was used for 50 nm well-tempered SiGe p- MOSFETs. As the delta doping made the threshold voltage roll off too serious, it was not suitable for 25 nm well-tempered SiGe p-MOSFETs

    Diseño de circuitos analógicos y de señal mixta con consideraciones de diseño físico y variabilidad

    Get PDF
    Advances in microelectronic technology has been based on an increasing capacity to integrate transistors, moving this industry to the nanoelectronics realm in recent years. Moore’s Law [1] has predicted (and somehow governed) the growth of the capacity to integrate transistors in a single IC. Nevertheless, while this capacity has grown steadily, the increasing number of design tasks that are involved in the creation of the integrated circuit and their complexity has led to a phenomenon known as the ``design gap®®. This is the difference between what can theoretically be integrated and what can practically be designed. Since the early 2000s, the International Technology Roadmap of Semiconductors (ITRS) reports, published by the Semiconductor Industry Association (SIA), alert about the necessity to limit the growth of the design cost by increasing the productivity of the designer to continue the semiconductor industry’s growth. Design automation arises as a key element to close this ”design gap”. In this sense, electronic design automation (EDA) tools have reached a level of maturity for digital circuits that is far behind the EDA tools that are made for analog circuit design automation. While digital circuits rely, in general, on two stable operation states (which brings inherent robustness against numerous imperfections and interferences, leading to few design constraints like area, speed or power consumption), analog signal processing, on the other hand, demands compliance with lots of constraints (e.g., matching, noise, robustness, ...). The triumph of digital CMOS circuits, thanks to their mentioned robustness, has, ultimately, facilitated the way that circuits can be processed by algorithms, abstraction levels and description languages, as well as how the design information traverse the hierarchical levels of a digital system. The field of analog design automation faces many more difficulties due to the many sources of perturbation, such as the well-know process variability, and the difficulty in treating these systematically, like digital tools can do. In this Thesis, different design flows are proposed, focusing on new design methodologies for analog circuits, thus, trying to close the ”gap” between digital and analog EDA tools. In this chapter, the most important sources for perturbations and their impact on the analog design process are discussed in Section 1.2. The traditional analog design flow is discussed in 1.3. Emerging design methodologies that try to reduce the ”design gap” are presented in Section 1.4 where the key concept of Pareto-Optimal Front (POF) is explained. This concept, brought from the field of economics, models the analog circuit performances into a set of solutions that show the optimal trade-offs among conflicting circuit performances (e.g. DC-gain and unity-gain frequency). Finally, the goals of this thesis are presented in Section 1.5

    Circuit Optimisation using Device Layout Motifs

    Get PDF
    Circuit designers face great challenges as CMOS devices continue to scale to nano dimensions, in particular, stochastic variability caused by the physical properties of transistors. Stochastic variability is an undesired and uncertain component caused by fundamental phenomena associated with device structure evolution, which cannot be avoided during the manufacturing process. In order to examine the problem of variability at atomic levels, the 'Motif' concept, defined as a set of repeating patterns of fundamental geometrical forms used as design units, is proposed to capture the presence of statistical variability and improve the device/circuit layout regularity. A set of 3D motifs with stochastic variability are investigated and performed by technology computer aided design simulations. The statistical motifs compact model is used to bridge between device technology and circuit design. The statistical variability information is transferred into motifs' compact model in order to facilitate variation-aware circuit designs. The uniform motif compact model extraction is performed by a novel two-step evolutionary algorithm. The proposed extraction method overcomes the drawbacks of conventional extraction methods of poor convergence without good initial conditions and the difficulty of simulating multi-objective optimisations. After uniform motif compact models are obtained, the statistical variability information is injected into these compact models to generate the final motif statistical variability model. The thesis also considers the influence of different choices of motif for each device on circuit performance and its statistical variability characteristics. A set of basic logic gates is constructed using different motif choices. Results show that circuit performance and variability mitigation can benefit from specific motif permutations. A multi-stage optimisation methodology is introduced, in which the processes of optimisation are divided into several stages. Benchmark circuits show the efficacy of the proposed methods. The results presented in this thesis indicate that the proposed methods are able to provide circuit performance improvements and are able to create circuits that are more robust against variability

    Compact Modeling and Physical Design Automation of Inkjet-Printed Electronics Technology

    Get PDF

    Variability-Aware Circuit Performance Optimisation Through Digital Reconfiguration

    Get PDF
    This thesis proposes optimisation methods for improving the performance of circuits imple- mented on a custom reconfigurable hardware platform with knowledge of intrinsic variations, through the use of digital reconfiguration. With the continuing trend of transistor shrinking, stochastic variations become first order effects, posing a significant challenge for device reliability. Traditional device models tend to be too conservative, as the margins are greatly increased to account for these variations. Variation-aware optimisation methods are then required to reduce the performance spread caused by these substrate variations. The Programmable Analogue and Digital Array (PAnDA) is a reconfigurable hardware plat- form which combines the traditional architecture of a Field Programmable Gate Array (FPGA) with the concept of configurable transistor widths, and is used in this thesis as a platform on which variability-aware circuits can be implemented. A model of the PAnDA architecture is designed to allow for rapid prototyping of devices, making the study of the effects of intrinsic variability on circuit performance – which re- quires expensive statistical simulations – feasible. This is achieved by means of importing statistically-enhanced transistor performance data from RandomSPICE simulations into a model of the PAnDA architecture implemented in hardware. Digital reconfiguration is then used to explore the hardware resources available for performance optimisation. A bio-inspired optimisation algorithm is used to explore the large solution space more efficiently. Results from test circuits suggest that variation-aware optimisation can provide a significant reduction in the spread of the distribution of performance across various instances of circuits, as well as an increase in performance for each. Even if transistor geometry flexibility is not available, as is the case of traditional architectures, it is still possible to make use of the substrate variations to reduce spread and increase performance by means of function relocation

    Prognostics and health management of power electronics

    Get PDF
    Prognostics and health management (PHM) is a major tool enabling systems to evaluate their reliability in real-time operation. Despite ground-breaking advances in most engineering and scientific disciplines during the past decades, reliability engineering has not seen significant breakthroughs or noticeable advances. Therefore, self-awareness of the embedded system is also often required in the sense that the system should be able to assess its own health state and failure records, and those of its main components, and take action appropriately. This thesis presents a radically new prognostics approach to reliable system design that will revolutionise complex power electronic systems with robust prognostics capability enhanced Insulated Gate Bipolar Transistors (IGBT) in applications where reliability is significantly challenging and critical. The IGBT is considered as one of the components that is mainly damaged in converters and experiences a number of failure mechanisms, such as bond wire lift off, die attached solder crack, loose gate control voltage, etc. The resulting effects mentioned are complex. For instance, solder crack growth results in increasing the IGBT’s thermal junction which becomes a source of heat turns to wire bond lift off. As a result, the indication of this failure can be seen often in increasing on-state resistance relating to the voltage drop between on-state collector-emitter. On the other hand, hot carrier injection is increased due to electrical stress. Additionally, IGBTs are components that mainly work under high stress, temperature and power consumptions due to the higher range of load that these devices need to switch. This accelerates the degradation mechanism in the power switches in discrete fashion till reaches failure state which fail after several hundred cycles. To this end, exploiting failure mechanism knowledge of IGBTs and identifying failure parameter indication are background information of developing failure model and prognostics algorithm to calculate remaining useful life (RUL) along with ±10% confidence bounds. A number of various prognostics models have been developed for forecasting time to failure of IGBTs and the performance of the presented estimation models has been evaluated based on two different evaluation metrics. The results show significant improvement in health monitoring capability for power switches.Furthermore, the reliability of the power switch was calculated and conducted to fully describe health state of the converter and reconfigure the control parameter using adaptive algorithm under degradation and load mission limitation. As a result, the life expectancy of devices has been increased. These all allow condition-monitoring facilities to minimise stress levels and predict future failure which greatly reduces the likelihood of power switch failures in the first place

    Numerical Simulations

    Get PDF
    This book will interest researchers, scientists, engineers and graduate students in many disciplines, who make use of mathematical modeling and computer simulation. Although it represents only a small sample of the research activity on numerical simulations, the book will certainly serve as a valuable tool for researchers interested in getting involved in this multidisciplinary ïŹeld. It will be useful to encourage further experimental and theoretical researches in the above mentioned areas of numerical simulation

    Synaptic weight modification and storage in hardware neural networks

    Get PDF
    In 2011 the International Technology Roadmap for Semiconductors, ITRS 2011, outlined how the semiconductor industry should proceed to pursue Moore’s Law past the 18nm generation. It envisioned a concept of ‘More than Moore’, in which existing semiconductor technologies can be exploited to enable the fabrication of diverse systems and in particular systems which integrate non-digital and biologically based functionality. A rapid expansion and growing interest in the fields of microbiology, electrophysiology, and computational neuroscience occurred. This activity has provided significant understanding and insight into the function and structure of the human brain leading to the creation of systems which mimic the operation of the biological nervous system. As the systems expand a need for small area, low power devices which replicate the important biological features of neural networks has been established to implement large scale networks. In this thesis work is presented which focuses on the modification and storage of synaptic weights in hardware neural networks. Test devices were incorporated on 3 chip runs; each chip was fabricated in a 0.35ÎŒm process from Austria MicroSystems (AMS) and used for parameter extraction, in accordance with the theoretical analysis presented. A compact circuit is presented which can implement STDP, and has advantages over current implementations in that the critical timing window for synaptic modification is implemented within the circuit. The duration of the critical timing window is set by the subthreshold current controlled by the voltage, Vleak, applied to transistor Mleak in the circuit. A physical model to predict the time window for plasticity to occur is formulated and the effects of process variations on the window is analysed. The STDP circuit is implemented using two dedicated circuit blocks, one for potentiation and one for depression where each block consists of 4 transistors and a polysilicon capacitor, and an area of 980”m2. SpectreS simulations of the back-annotated layout of the circuit and experimental results indicate that STDP with biologically plausible critical timing windows over the range 10”s to 100ms can be implemented. Theoretical analysis using parameters extracted from MOS test devices is used to describe the operation of each device and circuit presented. Simulation results and results obtained from fabricated devices confirm the validity of these designs and approaches. Both the WP and WD circuits have a power consumption of approximately 2.4mW, during a weight update. If no weight update occurs the resting currents within the device are in the nA range, thus each circuit has a power consumption of approximately 1”W. A floating gate, FG, device fabricated using a standard CMOS process is presented. This device is to be integrated with both the WP and WD STDP circuits. The FG device is designed to store negative charge on a FG to represent the synaptic weight of the associated synapse. Charge is added or removed from the FG via Fowler-Nordheim tunnelling. This thesis outlines the design criteria and theoretical operation of this device. A model of the charge storage characteristics is presented and verified using HFCV and PCV experimental results. Limited precision weights, LPW, and its potential use in hardware neural networks is also considered. LPW offers a potential solution in the quest to design a compact FG device for use with CTS. The algorithms presented in this thesis show that LPW allows for a reduction in the synaptic weight storage device while permitting the network to function as intended
    • 

    corecore