2 research outputs found

    End to End Delay and Energy Consumption in a Two Tier Cluster Hierarchical Wireless Sensor Networks

    Full text link
    [EN] In this work it is considered a circular Wireless Sensor Networks (WSN) in a planar structure with uniform distribution of the sensors and with a two-level hierarchical topology. At the lower level, a cluster configuration is adopted in which the sensed information is transferred from sensor nodes to a cluster head (CH) using a random access protocol (RAP). At CH level, CHs transfer information, hop-by-hop, ring-by-ring, towards to the sink located at the center of the sensed area using TDMA as MAC protocol. A Markovian model to evaluate the end-to-end (E2E) transfer delay is formulated. In addition to other results such as the well know energy hole problem, the model reveals that for a given radial distance between the CH and the sink, the transfer delay depends on the angular orientation between them. For instance, when two rings of CHs are deployed in the WSN area, the E2E delay of data packets generated at ring 2 and at the ¿west¿ side of the sink, is 20% higher than the corresponding E2E delay of data packets generated at ring 2 and at the ¿east¿ side of the sink. This asymmetry can be alleviated by rotating from time to time the allocation of temporary slots to CHs in the TDMA communication. Also, the energy consumption is evaluated and the numerical results show that for a WSN with a small coverage area, say a radio of 100 m, the energy saving is more significant when a small number of rings are deployed, perhaps none (a single cluster in which the sink acts as a CH). Conversely, topologies with a large number of rings, say 4 or 5, offer a better energy performance when the service WSN covers a large area, say radial distances greater than 400 m.The work of V. Casares-Giner (ITACA research institute) is partly supported by the Spanish national projects TIN2013-47272-C2-1-R and TEC2015-71932-REDT. The work of Tatiana Navas, Dolly Florez, and Tito R. Vargas H., and the collaboration between the two institutions, is supported by the Universidad Santo Tomas under Master Degree's research and academic projects.Casares-Giner, V.; Navas, TI.; Smith Flórez, D.; Vargas Hernández, TR. (2019). End to End Delay and Energy Consumption in a Two Tier Cluster Hierarchical Wireless Sensor Networks. Information. 10(4):1-29. https://doi.org/10.3390/info10040135S129104Sari, A. (2015). Two-Tier Hierarchical Cluster Based Topology in Wireless Sensor Networks for Contention Based Protocol Suite. International Journal of Communications, Network and System Sciences, 08(03), 29-42. doi:10.4236/ijcns.2015.83004Haibo Zhang, & Hong Shen. (2009). Balancing Energy Consumption to Maximize Network Lifetime in Data-Gathering Sensor Networks. IEEE Transactions on Parallel and Distributed Systems, 20(10), 1526-1539. doi:10.1109/tpds.2008.252Wieselthier, J. E., Ephremides, A., & Michaels, L. A. (1989). An exact analysis and performance evaluation of framed ALOHA with capture. IEEE Transactions on Communications, 37(2), 125-137. doi:10.1109/26.20080Liu, W., Zhao, D., & Zhu, G. (2012). End-to-end delay and packet drop rate performance for a wireless sensor network with a cluster-tree topology. Wireless Communications and Mobile Computing, 14(7), 729-744. doi:10.1002/wcm.2230Alabdulmohsin, I., Hyadi, A., Afify, L., & Shihada, B. (2014). End-to-end delay analysis in wireless sensor networks with service vacation. 2014 IEEE Wireless Communications and Networking Conference (WCNC). doi:10.1109/wcnc.2014.6952872Park, J., Lee, S., & Yoo, S. (2015). Time slot assignment for convergecast in wireless sensor networks. Journal of Parallel and Distributed Computing, 83, 70-82. doi:10.1016/j.jpdc.2015.05.004Yang, X., Wang, L., Xie, J., & Zhang, Z. (2018). Energy Efficiency TDMA/CSMA Hybrid Protocol with Power Control for WSN. Wireless Communications and Mobile Computing, 2018, 1-7. doi:10.1155/2018/4168354Sgora, A., Vergados, D. J., & Vergados, D. D. (2015). A Survey of TDMA Scheduling Schemes in Wireless Multihop Networks. ACM Computing Surveys, 47(3), 1-39. doi:10.1145/2677955Martin, E., Liu, L., Covington, M., Pesti, P., & Weber, M. (2010). Positioning Technologies in Location-Based Services. Location-Based Services Handbook, 1-45. doi:10.1201/9781420071986-c1PAL, A. (2010). Localization Algorithms in Wireless Sensor Networks: Current Approaches and Future Challenges. Network Protocols and Algorithms, 2(1). doi:10.5296/npa.v2i1.279Kusdaryono, A., & Lee, K.-O. (2011). A Clustering Protocol with Mode Selection for Wireless Sensor Network. Journal of Information Processing Systems, 7(1), 29-42. doi:10.3745/jips.2011.7.1.029Donald, V. H. M. (1979). Advanced Mobile Phone Service: The Cellular Concept. Bell System Technical Journal, 58(1), 15-41. doi:10.1002/j.1538-7305.1979.tb02209.xCasares-Giner, V., Wuchner, P., Pacheco-Paramo, D., & de Meer, H. (2012). Combined contention and TDMA-based communication in wireless sensor networks. Proceedings of the 8th Euro-NF Conference on Next Generation Internet NGI 2012. doi:10.1109/ngi.2012.6252158Ranganathan, P., & Nygard, K. (2010). Time Synchronization in Wireless Sensor Networks: A Survey. International Journal of UbiComp, 1(2), 92-102. doi:10.5121/iju.2010.1206Sahoo, A., & Chilukuri, S. (2010). DGRAM: A Delay Guaranteed Routing and MAC Protocol for Wireless Sensor Networks. IEEE Transactions on Mobile Computing, 9(10), 1407-1423. doi:10.1109/tmc.2010.107Wu, Y.-C., Chaudhari, Q., & Serpedin, E. (2011). Clock Synchronization of Wireless Sensor Networks. IEEE Signal Processing Magazine, 28(1), 124-138. doi:10.1109/msp.2010.938757Casares-Giner, V., Sempere-Payá, V., & Todolí-Ferrandis, D. (2014). Framed ALOHA Protocol with FIFO-Blocking and LIFO-Push out Discipline. Network Protocols and Algorithms, 6(3), 82. doi:10.5296/npa.v6i3.5557Tello-Oquendo, L., Pla, V., Leyva-Mayorga, I., Martinez-Bauset, J., Casares-Giner, V., & Guijarro, L. (2019). Efficient Random Access Channel Evaluation and Load Estimation in LTE-A With Massive MTC. IEEE Transactions on Vehicular Technology, 68(2), 1998-2002. doi:10.1109/tvt.2018.2885333Adan, I. J. B. F., van Leeuwaarden, J. S. H., & Winands, E. M. M. (2006). On the application of Rouché’s theorem in queueing theory. Operations Research Letters, 34(3), 355-360. doi:10.1016/j.orl.2005.05.012Casares-Giner, V., Martinez-Bauset, J., & Portillo, C. (2019). Performance evaluation of framed slotted ALOHA with reservation packets and succesive interference cancelation for M2M networks. Computer Networks, 155, 15-30. doi:10.1016/j.comnet.2019.02.02

    New Approach of Energy-Efficient Hierarchical Clustering Based on Neighbor Rotation for RWSN

    No full text
    corecore