36 research outputs found

    A review of synthetic-aperture radar image formation algorithms and implementations: a computational perspective

    Get PDF
    Designing synthetic-aperture radar image formation systems can be challenging due to the numerous options of algorithms and devices that can be used. There are many SAR image formation algorithms, such as backprojection, matched-filter, polar format, Range–Doppler and chirp scaling algorithms. Each algorithm presents its own advantages and disadvantages considering efficiency and image quality; thus, we aim to introduce some of the most common SAR image formation algorithms and compare them based on these two aspects. Depending on the requisites of each individual system and implementation, there are many device options to choose from, for in stance, FPGAs, GPUs, CPUs, many-core CPUs, and microcontrollers. We present a review of the state of the art of SAR imaging systems implementations. We also compare such implementations in terms of power consumption, execution time, and image quality for the different algorithms used.info:eu-repo/semantics/publishedVersio

    High-Temporal-Resolution High-Spatial-Resolution Spaceborne SAR Based on Continuously Varying PRF

    Get PDF
    Synthetic Aperture Radar (SAR) is a well-established and powerful imaging technique for acquiring high-spatial-resolution images of the Earth's surface. With the development of beam steering techniques, sliding spotlight and staring spotlight modes have been employed to support high-spatial-resolution applications. In addition to this strengthened high-spatial-resolution and wide-swath capability, high-temporal-resolution (short repeat-observation interval) represents a key capability for numerous applications. However, conventional SAR systems are limited in that the same patch can only be illuminated for several seconds within a single pass. This paper considers a novel high-squint-angle system intended to acquire high-spatial-resolution spaceborne SAR images with repeat-observation intervals varying from tens of seconds to several minutes within a single pass. However, an exponentially increased range cell migration would arise and lead to a conflict between the receive window and 'blind ranges'. An efficient data acquisition technique for high-temporal-resolution, high-spatial-resolution and high-squint-angle spaceborne SAR, in which the pulse repetition frequency (PRF) is continuously varied according to the changing slant range, is presented in this paper. This technique allows echo data to remain in the receive window instead of conflicting with the transmitted pulse or nadir echo. Considering the precision of hardware, a compromise and practical strategy is also proposed. Furthermore, a detailed performance analysis of range ambiguities is provided with respect to parameters of TerraSAR-X. For strong point-like targets, the range ambiguity of this technique would be better than that of uniform PRF technique. For this innovative technique, a resampling strategy and modified imaging algorithm have been developed to handle the non-uniformly sampled echo data. Simulations are performed to validate the efficiency of the proposed technique and the associated imaging algorithm

    Extension of Wavenumber Domain Focusing for spotlight COSMO-SkyMed SAR Data

    Get PDF
    In this work we describe a method to handle curved orbits in wavenumber domain focusing algorithm for high-resolution SAR data acquired by Low Earth Orbit satellites using spotlight mode. The stand..

    Highly Resolved Synthetic Aperture Radar with Beam Steering

    Get PDF
    The present work deals with a highly resolved radar with a synthetic aperture (synthetic aperture radar - SAR), which uses a beam steering to improve performance. The first part of this work deals with the influence of various effects occurring in the hardware of the High-Resolution Wide-Swath SAR (HRWS SAR) system. A special focus was set to single bit quantization in multi-channel receiver. The second part of this work describes SAR processors for Sliding Spotlight mode

    Highly Resolved Synthetic Aperture Radar with Beam Steering

    Get PDF
    Diese Arbeit beschäftigt sich mit einem hochauflösenden Radar mit synthetischer Apertur. Der erste Teil dieser Arbeit beschreibt mögliche Auswirkungen verschiedener Effekte in dem Empfänger des High-Resolution Wide-Swath SAR (HRWS SAR) Systems. Darüber hinaus wird ein Konzept zu Reduktion von Quantisierungsbits in Systemen mit mehreren Empfangskanälen untersucht. Der zweite Teil der Arbeit betrifft die Datenverarbeitung eines hochauflösenden SAR-Systems in Sliding Spotlight Mode

    Radar Imaging in Challenging Scenarios from Smart and Flexible Platforms

    Get PDF
    undefine

    Theory and Design of a Highly Compressed Dropped-Channel Polarimetric Synthetic Aperture Radar

    Get PDF
    Compressed sensing (CS) is a recent mathematical technique that leverages the sparsity in certain sets of data to solve an underdetermined system and recover a full set of data from a sub-Nyquist set of measurements of the data. Given the size and sparsity of the data, radar has been a natural choice to apply compressed sensing to, typically in the fast-time and slow-time domains. Polarimetric synthetic aperture radar (PolSAR) generates a particularly large amount of data for a given scene; however, the data tends to be sparse. Recently a technique was developed to recover a dropped PolSAR channel by leveraging antenna crosstalk information and using compressed sensing. In this dissertation, we build upon the initial concept of the dropped-channel PolSAR CS in three ways. First, we determine a metric which relates the measurement matrix to the l2 recovery error. The new metric is necessary given the deterministic nature of the measurement matrix. We then determine a range of antenna crosstalk required to recover a dropped PolSAR channel. Second, we propose a new antenna design that incorporates the relatively high levels of crosstalk required by a dropped-channel PolSAR system. Finally, we integrate fast- and slow-time compression schemes into the dropped-channel model in order to leverage sparsity in additional PolSAR domains and overall increase the compression ratio. The completion of these research tasks has allowed a more accurate description of a PolSAR system that compresses in fast-time, slow-time, and polarization; termed herein as highly compressed PolSAR. The description of a highly compressed PolSAR system is a big step towards the development of prototype hardware in the future

    Technique-Based Exploitation Of Low Grazing Angle SAR Imagery Of Ship Wakes

    Get PDF
    The pursuit of the understanding of the effect a ship has on water is a field of study that is several hundreds of years old, accelerated during the years of the industrial revolution where the efficiency of a ship’s engine and hull determined the utility of the burgeoning globally important sea lines of communication. The dawn of radar sensing and electronic computation have expanding this field of study still further where new ground is still being broken. This thesis looks to address a niche area of synthetic aperture radar imagery of ship wakes, specifically the imaging geometry utilising a low grazing angle, where significant non-linear effects are often dominant in the environment. The nuances of the synthetic aperture radar processing techniques compounded with the low grazing angle geometry to produce unusual artefacts within the imagery. It is the understanding of these artefacts that is central to this thesis. A sub-aperture synthetic aperture radar technique is applied to real data alongside coarse modelling of a ship and its wake before finally developing a full hydrodynamic model for a ship’s wake from first principles. The model is validated through comparison with previously developed work. The analysis shows that the resultant artefacts are a culmination of individual synthetic aperture radar anomalies and the reaction of the radar energy to the ambient sea surface and spike events

    A Novel General Imaging Formation Algorithm for GNSS-Based Bistatic SAR.

    Get PDF
    Global Navigation Satellite System (GNSS)-based bistatic Synthetic Aperture Radar (SAR) recently plays a more and more significant role in remote sensing applications for its low-cost and real-time global coverage capability. In this paper, a general imaging formation algorithm was proposed for accurately and efficiently focusing GNSS-based bistatic SAR data, which avoids the interpolation processing in traditional back projection algorithms (BPAs). A two-dimensional point target spectrum model was firstly presented, and the bulk range cell migration correction (RCMC) was consequently derived for reducing range cell migration (RCM) and coarse focusing. As the bulk RCMC seriously changes the range history of the radar signal, a modified and much more efficient hybrid correlation operation was introduced for compensating residual phase errors. Simulation results were presented based on a general geometric topology with non-parallel trajectories and unequal velocities for both transmitter and receiver platforms, showing a satisfactory performance by the proposed method

    Ultralight Radar Sensor for Autonomous Operations by Mini- and Micro-UAS

    Get PDF
    In recent years the boost in operations by mini- and micro-UAS (Unmanned Aircraft Systems, also known as Remotely Piloted Aircraft Systems - RPAS - or simply drones) and the successful miniaturization of electronic components were experienced. Radar sensors demonstrated to have favorable features for these operations. However, despite their ability to provide meaningful information for navigation, sense-and-avoid, and imaging tasks, currently very few radar sensors are exploited onboard or developed for autonomous operations with mini- and micro-UAS. Exploration of indoor complex, dangerous, and not easily accessible environments represents a possible application for mini-UAS based on radar technology. In this scenario, the objective of the thesis is to develop design strategies and processing approaches for a novel ultralight radar sensor able to provide the miniaturized platform with Simultaneous Localization and Mapping (SLAM) capabilities, mainly but not exclusively indoors. Millimeter-wave Interferometric Synthetic Aperture Radar (mmw InSAR) technology has been identified as a key asset. At the same time, testing of commercial lightweight radar is carried out to assess potentialities towards autonomous navigation, sense-and-avoid, and imaging. The two main research lines can be outlined as follows: - Long-term scenario: Development of very compact and ultralight Synthetic Aperture Radar able to provide mini- or micro-UAS with very accurate 3D awareness in indoor or GPS-denied complex and harsh environments. - Short-term scenario: Assessment of true potentialities of current commercial radar sensors in a UAS-oriented scenario. Within the framework of long-term scenario, after a review of state-of-art SAR sensors, Frequency-Modulated Continuous Wave (FMCW) SAR technology has been selected as preferred candidate. Design procedure tailored to this technology and software simulator for operations have been developed in MATLAB environment. Software simulator accounts for the analysis of ambiguous areas in a three-dimensional environment, different SAR focusing algorithms, and a Ray-Tracing algorithm specifically designed for indoor operations. The simulations provided relevant information on actual feasibility of the sensor, as well as mission design characteristics. Additionally, field tests have been carried out at Fraunhofer Institute FHR with a mmw SAR. Processing approaches developed from simulations proved to be effective when dealing with field tests. A very lightweight FMCW radar sensor manifactured by IMST GmbH has been tested for short-term scenario operations. The codes for data acquisition were developed in Python language both for Windows-based and GNU/Linux-based operative systems. The radar provided information on range and angle of targets in the scene, thus being interesting for radar-aided UAS navigation. Multiple-target tracking and radar odometry algorithms have been developed and tested on actual field data. Radar-only odometry provided to be effective under specific circumstances
    corecore