314 research outputs found

    Clique-Stable Set separation in perfect graphs with no balanced skew-partitions

    Get PDF
    Inspired by a question of Yannakakis on the Vertex Packing polytope of perfect graphs, we study the Clique-Stable Set Separation in a non-hereditary subclass of perfect graphs. A cut (B,W) of G (a bipartition of V(G)) separates a clique K and a stable set S if KBK\subseteq B and SWS\subseteq W. A Clique-Stable Set Separator is a family of cuts such that for every clique K, and for every stable set S disjoint from K, there exists a cut in the family that separates K and S. Given a class of graphs, the question is to know whether every graph of the class admits a Clique-Stable Set Separator containing only polynomially many cuts. It is open for the class of all graphs, and also for perfect graphs, which was Yannakakis' original question. Here we investigate on perfect graphs with no balanced skew-partition; the balanced skew-partition was introduced in the proof of the Strong Perfect Graph Theorem. Recently, Chudnovsky, Trotignon, Trunck and Vuskovic proved that forbidding this unfriendly decomposition permits to recursively decompose Berge graphs using 2-join and complement 2-join until reaching a basic graph, and they found an efficient combinatorial algorithm to color those graphs. We apply their decomposition result to prove that perfect graphs with no balanced skew-partition admit a quadratic-size Clique-Stable Set Separator, by taking advantage of the good behavior of 2-join with respect to this property. We then generalize this result and prove that the Strong Erdos-Hajnal property holds in this class, which means that every such graph has a linear-size biclique or complement biclique. This property does not hold for all perfect graphs (Fox 2006), and moreover when the Strong Erdos-Hajnal property holds in a hereditary class of graphs, then both the Erdos-Hajnal property and the polynomial Clique-Stable Set Separation hold.Comment: arXiv admin note: text overlap with arXiv:1308.644

    Independent sets of maximum weight in apple-free graphs

    Get PDF
    We present the first polynomial-time algorithm to solve the maximum weight independent set problem for apple-free graphs, which is a common generalization of several important classes where the problem can be solved efficiently, such as claw-free graphs, chordal graphs, and cographs. Our solution is based on a combination of two algorithmic techniques (modular decomposition and decomposition by clique separators) and a deep combinatorial analysis of the structure of apple-free graphs. Our algorithm is robust in the sense that it does not require the input graph G to be apple-free; the algorithm either finds an independent set of maximum weight in G or reports that G is not apple-free

    Clique versus Independent Set

    Get PDF
    Yannakakis' Clique versus Independent Set problem (CL-IS) in communication complexity asks for the minimum number of cuts separating cliques from stable sets in a graph, called CS-separator. Yannakakis provides a quasi-polynomial CS-separator, i.e. of size O(nlogn)O(n^{\log n}), and addresses the problem of finding a polynomial CS-separator. This question is still open even for perfect graphs. We show that a polynomial CS-separator almost surely exists for random graphs. Besides, if H is a split graph (i.e. has a vertex-partition into a clique and a stable set) then there exists a constant cHc_H for which we find a O(ncH)O(n^{c_H}) CS-separator on the class of H-free graphs. This generalizes a result of Yannakakis on comparability graphs. We also provide a O(nck)O(n^{c_k}) CS-separator on the class of graphs without induced path of length k and its complement. Observe that on one side, cHc_H is of order O(HlogH)O(|H| \log |H|) resulting from Vapnik-Chervonenkis dimension, and on the other side, ckc_k is exponential. One of the main reason why Yannakakis' CL-IS problem is fascinating is that it admits equivalent formulations. Our main result in this respect is to show that a polynomial CS-separator is equivalent to the polynomial Alon-Saks-Seymour Conjecture, asserting that if a graph has an edge-partition into k complete bipartite graphs, then its chromatic number is polynomially bounded in terms of k. We also show that the classical approach to the stubborn problem (arising in CSP) which consists in covering the set of all solutions by O(nlogn)O(n^{\log n}) instances of 2-SAT is again equivalent to the existence of a polynomial CS-separator

    Separability and Vertex Ordering of Graphs

    Get PDF
    Many graph optimization problems, such as finding an optimal coloring, or a largest clique, can be solved by a divide-and-conquer approach. One such well-known technique is decomposition by clique separators where a graph is decomposed into special induced subgraphs along their clique separators. While the most common practice of this method employs minimal clique separators, in this work we study other variations as well. We strive to characterize their structure and in particular the bound on the number of atoms. In fact, we strengthen the known bounds for the general clique cutset decomposition and the minimal clique separator decomposition. Graph ordering is the arrangement of a graph’s vertices according to a certain logic and is a useful tool in optimization problems. Special types of vertices are often recognized in graph classes, for instance it is well-known every chordal graph contains a simplicial vertex. Vertex-ordering, based on such properties, have originated many linear time algorithms. We propose to define a new family named SE-Class such that every graph belonging to this family inherently contains a simplicial extreme, that is a vertex which is either simplicial or has exactly two neighbors which are non-adjacent. Our family lends itself to an ordering based on simplicial extreme vertices (named SEO) which we demonstrate to be advantageous for the coloring and maximum clique problems. In addition, we examine the relation of SE-Class to the family of (Even-Hole, Kite)-free graphs and show a linear time generation of SEO for (Even-Hole, Diamond, Claw)-free graphs. We showcase the applications of those two core tools, namely clique-based decomposition and vertex ordering, on the (Even-Hole, Kite)-free family

    Clique separator decomposition of hole-free and diamond-free graphs and algorithmic consequences

    Get PDF
    AbstractClique separator decomposition, introduced by Whitesides and Tarjan, is one of the most important graph decompositions. A hole is a chordless cycle with at least five vertices. A paraglider is a graph with five vertices a,b,c,d,e and edges ab,ac,bc,bd,cd,ae,de. We show that every (hole, paraglider)-free graph admits a clique separator decomposition into graphs of three very specific types. This yields efficient algorithms for various optimization problems in this class of graphs

    Polynomial-time algorithm for Maximum Weight Independent Set on P6P_6-free graphs

    Full text link
    In the classic Maximum Weight Independent Set problem we are given a graph GG with a nonnegative weight function on vertices, and the goal is to find an independent set in GG of maximum possible weight. While the problem is NP-hard in general, we give a polynomial-time algorithm working on any P6P_6-free graph, that is, a graph that has no path on 66 vertices as an induced subgraph. This improves the polynomial-time algorithm on P5P_5-free graphs of Lokshtanov et al. (SODA 2014), and the quasipolynomial-time algorithm on P6P_6-free graphs of Lokshtanov et al (SODA 2016). The main technical contribution leading to our main result is enumeration of a polynomial-size family F\mathcal{F} of vertex subsets with the following property: for every maximal independent set II in the graph, F\mathcal{F} contains all maximal cliques of some minimal chordal completion of GG that does not add any edge incident to a vertex of II

    Structural Rounding: Approximation Algorithms for Graphs Near an Algorithmically Tractable Class

    Get PDF
    We develop a framework for generalizing approximation algorithms from the structural graph algorithm literature so that they apply to graphs somewhat close to that class (a scenario we expect is common when working with real-world networks) while still guaranteeing approximation ratios. The idea is to edit a given graph via vertex- or edge-deletions to put the graph into an algorithmically tractable class, apply known approximation algorithms for that class, and then lift the solution to apply to the original graph. We give a general characterization of when an optimization problem is amenable to this approach, and show that it includes many well-studied graph problems, such as Independent Set, Vertex Cover, Feedback Vertex Set, Minimum Maximal Matching, Chromatic Number, (l-)Dominating Set, Edge (l-)Dominating Set, and Connected Dominating Set. To enable this framework, we develop new editing algorithms that find the approximately-fewest edits required to bring a given graph into one of a few important graph classes (in some cases these are bicriteria algorithms which simultaneously approximate both the number of editing operations and the target parameter of the family). For bounded degeneracy, we obtain an O(r log{n})-approximation and a bicriteria (4,4)-approximation which also extends to a smoother bicriteria trade-off. For bounded treewidth, we obtain a bicriteria (O(log^{1.5} n), O(sqrt{log w}))-approximation, and for bounded pathwidth, we obtain a bicriteria (O(log^{1.5} n), O(sqrt{log w} * log n))-approximation. For treedepth 2 (related to bounded expansion), we obtain a 4-approximation. We also prove complementary hardness-of-approximation results assuming P != NP: in particular, these problems are all log-factor inapproximable, except the last which is not approximable below some constant factor 2 (assuming UGC)

    Organizing the atoms of the clique separator decomposition into an atom tree

    Get PDF
    International audienceWe define an atom tree of a graph as a generalization of a clique tree: its nodes are the atoms obtained by clique minimal separator decomposition, and its edges correspond to the clique minimal separators of the graph.Given a graph GG, we compute an atom tree by using a clique tree of a minimal triangulation HH of GG. Computing an atom tree with such a clique tree as input can be done in O(min(nm,m+nf))O(min(nm,m+nf)), where ff is the number of fill edges added by the triangulation. When both a minimal triangulation and the clique minimal separators of GG are provided, we compute an atom tree of GG in O(m+f)O(m+f) time, which is in O(n2)O(n2) time.We give an O(nm)O(nm) time algorithm, based on MCS, which combines in a single pass the 3 steps involved in building an atom tree: computing a minimal triangulation, constructing a clique tree, and constructing the corresponding atom tree.Finally, we present a process which uses a traversal of a clique tree of a minimal triangulation to determine the clique minimal separators and build the corresponding atom tree in O(n(n+t))O(n(n+t)) time, where tt is the number of 2-pairs of HH (tt is at most View the MathML sourcem¯−f, where View the MathML sourcem¯ is the number of edges of the complement graph); to complete this, we also give an algorithm which computes a minimal triangulation in View the MathML sourceO(n(n+m¯)) time, thus providing an approach to compute the decomposition in View the MathML sourceO(n(n+m¯)) time

    Decomposing 1-Sperner hypergraphs

    Full text link
    A hypergraph is Sperner if no hyperedge contains another one. A Sperner hypergraph is equilizable (resp., threshold) if the characteristic vectors of its hyperedges are the (minimal) binary solutions to a linear equation (resp., inequality) with positive coefficients. These combinatorial notions have many applications and are motivated by the theory of Boolean functions and integer programming. We introduce in this paper the class of 11-Sperner hypergraphs, defined by the property that for every two hyperedges the smallest of their two set differences is of size one. We characterize this class of Sperner hypergraphs by a decomposition theorem and derive several consequences from it. In particular, we obtain bounds on the size of 11-Sperner hypergraphs and their transversal hypergraphs, show that the characteristic vectors of the hyperedges are linearly independent over the reals, and prove that 11-Sperner hypergraphs are both threshold and equilizable. The study of 11-Sperner hypergraphs is motivated also by their applications in graph theory, which we present in a companion paper
    corecore