605 research outputs found

    Amortized Dynamic Cell-Probe Lower Bounds from Four-Party Communication

    Full text link
    This paper develops a new technique for proving amortized, randomized cell-probe lower bounds on dynamic data structure problems. We introduce a new randomized nondeterministic four-party communication model that enables "accelerated", error-preserving simulations of dynamic data structures. We use this technique to prove an Ω(n(logn/loglogn)2)\Omega(n(\log n/\log\log n)^2) cell-probe lower bound for the dynamic 2D weighted orthogonal range counting problem (2D-ORC) with n/polylognn/\mathrm{poly}\log n updates and nn queries, that holds even for data structures with exp(Ω~(n))\exp(-\tilde{\Omega}(n)) success probability. This result not only proves the highest amortized lower bound to date, but is also tight in the strongest possible sense, as a matching upper bound can be obtained by a deterministic data structure with worst-case operational time. This is the first demonstration of a "sharp threshold" phenomenon for dynamic data structures. Our broader motivation is that cell-probe lower bounds for exponentially small success facilitate reductions from dynamic to static data structures. As a proof-of-concept, we show that a slightly strengthened version of our lower bound would imply an Ω((logn/loglogn)2)\Omega((\log n /\log\log n)^2) lower bound for the static 3D-ORC problem with O(nlogO(1)n)O(n\log^{O(1)}n) space. Such result would give a near quadratic improvement over the highest known static cell-probe lower bound, and break the long standing Ω(logn)\Omega(\log n) barrier for static data structures

    Cell-Probe Lower Bounds from Online Communication Complexity

    Full text link
    In this work, we introduce an online model for communication complexity. Analogous to how online algorithms receive their input piece-by-piece, our model presents one of the players, Bob, his input piece-by-piece, and has the players Alice and Bob cooperate to compute a result each time before the next piece is revealed to Bob. This model has a closer and more natural correspondence to dynamic data structures than classic communication models do, and hence presents a new perspective on data structures. We first present a tight lower bound for the online set intersection problem in the online communication model, demonstrating a general approach for proving online communication lower bounds. The online communication model prevents a batching trick that classic communication complexity allows, and yields a stronger lower bound. We then apply the online communication model to prove data structure lower bounds for two dynamic data structure problems: the Group Range problem and the Dynamic Connectivity problem for forests. Both of the problems admit a worst case O(logn)O(\log n)-time data structure. Using online communication complexity, we prove a tight cell-probe lower bound for each: spending o(logn)o(\log n) (even amortized) time per operation results in at best an exp(δ2n)\exp(-\delta^2 n) probability of correctly answering a (1/2+δ)(1/2+\delta)-fraction of the nn queries

    Cell-probe Lower Bounds for Dynamic Problems via a New Communication Model

    Full text link
    In this paper, we develop a new communication model to prove a data structure lower bound for the dynamic interval union problem. The problem is to maintain a multiset of intervals I\mathcal{I} over [0,n][0, n] with integer coordinates, supporting the following operations: - insert(a, b): add an interval [a,b][a, b] to I\mathcal{I}, provided that aa and bb are integers in [0,n][0, n]; - delete(a, b): delete a (previously inserted) interval [a,b][a, b] from I\mathcal{I}; - query(): return the total length of the union of all intervals in I\mathcal{I}. It is related to the two-dimensional case of Klee's measure problem. We prove that there is a distribution over sequences of operations with O(n)O(n) insertions and deletions, and O(n0.01)O(n^{0.01}) queries, for which any data structure with any constant error probability requires Ω(nlogn)\Omega(n\log n) time in expectation. Interestingly, we use the sparse set disjointness protocol of H\aa{}stad and Wigderson [ToC'07] to speed up a reduction from a new kind of nondeterministic communication games, for which we prove lower bounds. For applications, we prove lower bounds for several dynamic graph problems by reducing them from dynamic interval union

    Lower Bounds for Oblivious Near-Neighbor Search

    Get PDF
    We prove an Ω(dlgn/(lglgn)2)\Omega(d \lg n/ (\lg\lg n)^2) lower bound on the dynamic cell-probe complexity of statistically oblivious\mathit{oblivious} approximate-near-neighbor search (ANN\mathsf{ANN}) over the dd-dimensional Hamming cube. For the natural setting of d=Θ(logn)d = \Theta(\log n), our result implies an Ω~(lg2n)\tilde{\Omega}(\lg^2 n) lower bound, which is a quadratic improvement over the highest (non-oblivious) cell-probe lower bound for ANN\mathsf{ANN}. This is the first super-logarithmic unconditional\mathit{unconditional} lower bound for ANN\mathsf{ANN} against general (non black-box) data structures. We also show that any oblivious static\mathit{static} data structure for decomposable search problems (like ANN\mathsf{ANN}) can be obliviously dynamized with O(logn)O(\log n) overhead in update and query time, strengthening a classic result of Bentley and Saxe (Algorithmica, 1980).Comment: 28 page

    Faster Worst Case Deterministic Dynamic Connectivity

    Get PDF
    We present a deterministic dynamic connectivity data structure for undirected graphs with worst case update time O(n(loglogn)2logn)O\left(\sqrt{\frac{n(\log\log n)^2}{\log n}}\right) and constant query time. This improves on the previous best deterministic worst case algorithm of Frederickson (STOC 1983) and Eppstein Galil, Italiano, and Nissenzweig (J. ACM 1997), which had update time O(n)O(\sqrt{n}). All other algorithms for dynamic connectivity are either randomized (Monte Carlo) or have only amortized performance guarantees
    corecore