390,304 research outputs found

    Variable selection for model-based clustering using the integrated complete-data likelihood

    Full text link
    Variable selection in cluster analysis is important yet challenging. It can be achieved by regularization methods, which realize a trade-off between the clustering accuracy and the number of selected variables by using a lasso-type penalty. However, the calibration of the penalty term can suffer from criticisms. Model selection methods are an efficient alternative, yet they require a difficult optimization of an information criterion which involves combinatorial problems. First, most of these optimization algorithms are based on a suboptimal procedure (e.g. stepwise method). Second, the algorithms are often greedy because they need multiple calls of EM algorithms. Here we propose to use a new information criterion based on the integrated complete-data likelihood. It does not require any estimate and its maximization is simple and computationally efficient. The original contribution of our approach is to perform the model selection without requiring any parameter estimation. Then, parameter inference is needed only for the unique selected model. This approach is used for the variable selection of a Gaussian mixture model with conditional independence assumption. The numerical experiments on simulated and benchmark datasets show that the proposed method often outperforms two classical approaches for variable selection.Comment: submitted to Statistics and Computin
    • …
    corecore