127 research outputs found

    Strong ETH Breaks With Merlin and Arthur: Short Non-Interactive Proofs of Batch Evaluation

    Get PDF
    We present an efficient proof system for Multipoint Arithmetic Circuit Evaluation: for every arithmetic circuit C(x1,
,xn)C(x_1,\ldots,x_n) of size ss and degree dd over a field F{\mathbb F}, and any inputs a1,
,aK∈Fna_1,\ldots,a_K \in {\mathbb F}^n, ∙\bullet the Prover sends the Verifier the values C(a1),
,C(aK)∈FC(a_1), \ldots, C(a_K) \in {\mathbb F} and a proof of O~(K⋅d)\tilde{O}(K \cdot d) length, and ∙\bullet the Verifier tosses poly(log⁥(dK∣F∣/Δ))\textrm{poly}(\log(dK|{\mathbb F}|/\varepsilon)) coins and can check the proof in about O~(K⋅(n+d)+s)\tilde{O}(K \cdot(n + d) + s) time, with probability of error less than Δ\varepsilon. For small degree dd, this "Merlin-Arthur" proof system (a.k.a. MA-proof system) runs in nearly-linear time, and has many applications. For example, we obtain MA-proof systems that run in cnc^{n} time (for various c<2c < 2) for the Permanent, #\#Circuit-SAT for all sublinear-depth circuits, counting Hamiltonian cycles, and infeasibility of 00-11 linear programs. In general, the value of any polynomial in Valiant's class VP{\sf VP} can be certified faster than "exhaustive summation" over all possible assignments. These results strongly refute a Merlin-Arthur Strong ETH and Arthur-Merlin Strong ETH posed by Russell Impagliazzo and others. We also give a three-round (AMA) proof system for quantified Boolean formulas running in 22n/3+o(n)2^{2n/3+o(n)} time, nearly-linear time MA-proof systems for counting orthogonal vectors in a collection and finding Closest Pairs in the Hamming metric, and a MA-proof system running in nk/2+O(1)n^{k/2+O(1)}-time for counting kk-cliques in graphs. We point to some potential future directions for refuting the Nondeterministic Strong ETH.Comment: 17 page

    Beating Exhaustive Search for Quantified Boolean Formulas and Connections to Circuit Complexity

    Get PDF

    Symbolic reactive synthesis

    Get PDF
    In this thesis, we develop symbolic algorithms for the synthesis of reactive systems. Synthesis, that is the task of deriving correct-by-construction implementations from formal specifications, has the potential to eliminate the need for the manual—and error-prone—programming task. The synthesis problem can be formulated as an infinite two-player game, where the system player has the objective to satisfy the specification against all possible actions of the environment player. The standard synthesis algorithms represent the underlying synthesis game explicitly and, thus, they scale poorly with respect to the size of the specification. We provide an algorithmic framework to solve the synthesis problem symbolically. In contrast to the standard approaches, we use a succinct representation of the synthesis game which leads to improved scalability in terms of the symbolically represented parameters. Our algorithm reduces the synthesis game to the satisfiability problem of quantified Boolean formulas (QBF) and dependency quantified Boolean formulas (DQBF). In the encodings, we use propositional quantification to succinctly represent different parts of the implementation, such as the state space and the transition function. We develop highly optimized satisfiability algorithms for QBF and DQBF. Based on a counterexample-guided abstraction refinement (CEGAR) loop, our algorithms avoid an exponential blow-up by using the structure of the underlying symbolic encodings. Further, we extend the solving algorithms to extract certificates in the form of Boolean functions, from which we construct implementations for the synthesis problem. Our empirical evaluation shows that our symbolic approach significantly outperforms previous explicit synthesis algorithms with respect to scalability and solution quality.In dieser Dissertation werden symbolische Algorithmen fĂŒr die Synthese von reaktiven Systemen entwickelt. Synthese, d.h. die Aufgabe, aus formalen Spezifikationen korrekte Implementierungen abzuleiten, hat das Potenzial, die manuelle und fehleranfĂ€llige Programmierung ĂŒberflĂŒssig zu machen. Das Syntheseproblem kann als unendliches Zweispielerspiel verstanden werden, bei dem der Systemspieler das Ziel hat, die Spezifikation gegen alle möglichen Handlungen des Umgebungsspielers zu erfĂŒllen. Die Standardsynthesealgorithmen stellen das zugrunde liegende Synthesespiel explizit dar und skalieren daher schlecht in Bezug auf die GrĂ¶ĂŸe der Spezifikation. Diese Arbeit prĂ€sentiert einen algorithmischen Ansatz, der das Syntheseproblem symbolisch löst. Im Gegensatz zu den StandardansĂ€tzen wird eine kompakte Darstellung des Synthesespiels verwendet, die zu einer verbesserten Skalierbarkeit der symbolisch dargestellten Parameter fĂŒhrt. Der Algorithmus reduziert das Synthesespiel auf das ErfĂŒllbarkeitsproblem von quantifizierten booleschen Formeln (QBF) und abhĂ€ngigkeitsquantifizierten booleschen Formeln (DQBF). In den Kodierungen verwenden wir propositionale Quantifizierung, um verschiedene Teile der Implementierung, wie den Zustandsraum und die Übergangsfunktion, kompakt darzustellen. Wir entwickeln hochoptimierte ErfĂŒllbarkeitsalgorithmen fĂŒr QBF und DQBF. Basierend auf einer gegenbeispielgefĂŒhrten Abstraktionsverfeinerungsschleife (CEGAR) vermeiden diese Algorithmen ein exponentielles Blow-up, indem sie die Struktur der zugrunde liegenden symbolischen Kodierungen verwenden. Weiterhin werden die Lösungsalgorithmen um Zertifikate in Form von booleschen Funktionen erweitert, aus denen Implementierungen fĂŒr das Syntheseproblem abgeleitet werden. Unsere empirische Auswertung zeigt, dass unser symbolischer Ansatz die bisherigen expliziten Synthesealgorithmen in Bezug auf Skalierbarkeit und LösungsqualitĂ€t deutlich ĂŒbertrifft

    Fighting Perebor: New and Improved Algorithms for Formula and QBF Satisfiability

    Get PDF

    A Framework of Quantum Strong Exponential-Time Hypotheses

    Get PDF
    • 

    corecore