703 research outputs found

    Empirical Comparison of Chirp and Multitones on Experimental UWB Software Defined Radar Prototype

    Get PDF
    This paper proposes and tests an approach for an unbiased study of radar waveforms' performances. Using the ultrawide band software defined radar prototype, the performances of Chirp and Multitones are compared in range profile and detection range. The architecture was implemented and has performances comparable to the state of the art in software defined radar prototypes. The experimental results are consistent with the simulations

    On PAPR Reduction of OFDM using Partial Transmit Sequence with Intelligent Optimization Algorithms

    Get PDF
    In recent time, the demand for multimedia data services over wireless links has grown up rapidly. Orthogonal Frequency Division Multiplexing (OFDM) forms the basis for all 3G and beyond wireless communication standards due to its efficient frequency utilization permitting near ideal data rate and ubiquitous coverage with high mobility. OFDM signals are prone to high peak-to-average-power ratio (PAPR). Unfortunately, the high PAPR inherent to OFDM signal envelopes occasionally drives high power amplifiers (HPAs) to operate in the nonlinear region of their characteristic leading out-of-band radiation, reduction in efficiency of communication system etc. A plethora of research has been devoted to reducing the performance degradation due to the PAPR problem inherent to OFDM systems. Advanced techniques such as partial transmit sequences (PTS) and selected mapping (SLM) have been considered most promising for PAPR reduction. Such techniques are seen to be efficient for distortion-less signal processing but suffer from computational complexity and often requires transmission of extra information in terms of several side information (SI) bits leading to loss in effective data rate. This thesis investigates the PAPR problem using Partial Transmit Sequence (PTS) scheme, where optimization is achieved with evolutionary bio-inspired metaheuristic stochastic algorithms. The phase factor optimization in PTS is used for PAPR reduction. At first, swarm intelligence based Firefly PTS (FF-PTS) algorithm is proposed which delivers improved PAPR performance with reduced searching complexity. Following this, Cuckoo Search based PTS (CS-PTS) technique is presented, which offers good PAPR performance in terms of solution quality and convergence speed. Lastly, Improved Harmony search based PTS (IHS-PTS) is introduced, which provides improved PAPR. The algorithm has simple structure with a very few parameters for larger PTS sub-blocks. The PAPR performance of the proposed technique with different parameters is also verified through extensive computer simulations. Furthermore, complexity analysis of algorithms demonstrates that the proposed schemes offer significant complexity reduction when compared to standard PAPR reduction techniques. Findings have been validated through extensive simulation tests

    Modified elite chaotic artificial fish swarm algorithm for PAPR reduction in OFDM systems

    Full text link
    © 2014 IEEE. Orthogonal frequency division multiplexing (OFDM) is a leading technology in the field of broadband wireless communications. In OFDM systems, a high peak-to-average power ratio (PAPR) is a critical issue, which may cause a nonlinear distortion and reduce power efficiency. To reduce the PAPR, partial transmit sequences (PTS) technique can be applied to the transmit data. However, the phase factor sequence selection in PTS technique is a non-linear optimization problem and it suffers from high complexity and memory use when there is a large number of non-overlapping sub-blocks in one symbol. In this paper a novel modified elite chaotic artificial fish swarm algorithm for PTS method (MECAFSA-PTS) is proposed to generate the optimum phase factors. The MECAFSA-PTS method is evaluated with extensive simulations and its performance is compared with quantum evolutionary and selective mapping algorithms. Our results show that the proposed MECAFSA-PTS algorithm is efficient in PAPR reduction

    A Review Paper on PAPR Reduction in OFDM using SLM and Adaptive Clipping

    Get PDF
    Orthogonal Frequency division Multiplexing (OFDM) is an effectual technique of data transmission for high speed communication schemes. However, the main drawback of OFDM system is the high Peak to Average Power Ratio (PAPR) of the communicated signals. OFDM contain of large number of independent subcarriers, as a result of which the amplitude of such a signal can have high peak values. Coding, phase rotation and clipping are between many PAPR reduction schemes that have been proposed to overcome this problem. Here in this paper we survey on two different PAPR reduction methods adaptive clipping and selective mapping (SLM) are used to reduce PAPR. Important reduction in PAPR has been achieved using these techniques

    Low Correlation Interference OFDM-NLFM Waveform Design for MIMO Radar Based on Alternating Optimization.

    Get PDF
    The OFDM chirp signal is suitable for MIMO radar applications due to its large time-bandwidth product, constant time-domain, and almost constant frequency-domain modulus. Particularly, by introducing the time-frequency structure of the non-linear frequency modulation (NLFM) signal into the design of an OFDM chirp waveform, a new OFDM-NLFM waveform with low peak auto-correlation sidelobe ratio (PASR) and peak cross-correlation ratio (PCCR) is obtained. IN-OFDM is the OFDM-NLFM waveform set currently with the lowest PASR and PCCR. Here we construct the optimization model of the OFDM-NLFM waveform set with the objective function being the maximum of the PASR and PCCR. Further, this paper proposes an OFDM-NLFM waveform set design algorithm inspired by alternating optimization. We implement the proposed algorithm by the alternate execution of two sub-algorithms. First, we keep both the sub-chirp sequence code matrix and sub-chirp rate plus and minus (PM) code matrix unchanged and use the particle swarm optimization (PSO) algorithm to obtain the optimal parameters of the NLFM signal's time-frequency structure (NLFM parameters). Next, we keep current optimal NLFM parameters unchanged, and optimize the sub-chirp sequence code matrix and sub-chirp rate PM code matrix using the block coordinate descent (BCD) algorithm. The above two sub-algorithms are alternately executed until the objective function converges to the optimal solution. The results show that the PASR and PCCR of the obtained OFDM-NLFM waveform set are about 5 dB lower than that of the IN-OFDM
    corecore