2,621 research outputs found

    Primary ideals and their differential equations

    Get PDF
    An ideal in a polynomial ring encodes a system of linear partial differential equations with constant coefficients. Primary decomposition organizes the solutions to the PDE. This paper develops a novel structure theory for primary ideals in a polynomial ring. We characterize primary ideals in terms of PDE, punctual Hilbert schemes, relative Weyl algebras, and the join construction. Solving the PDE described by a primary ideal amounts to computing Noetherian operators in the sense of Ehrenpreis and Palamodov. We develop new algorithms for this task, and we present efficient implementations.Comment: 32 pages. To appear in Foundations of Computational Mathematic

    An algorithm for primary decomposition in polynomial rings over the integers

    Full text link
    We present an algorithm to compute a primary decomposition of an ideal in a polynomial ring over the integers. For this purpose we use algorithms for primary decomposition in polynomial rings over the rationals resp. over finite fields, and the idea of Shimoyama-Yokoyama resp. Eisenbud-Hunecke-Vasconcelos to extract primary ideals from pseudo-primary ideals. A parallelized version of the algorithm is implemented in SINGULAR. Examples and timings are given at the end of the article.Comment: 8 page

    Parallelization of Modular Algorithms

    Get PDF
    In this paper we investigate the parallelization of two modular algorithms. In fact, we consider the modular computation of Gr\"obner bases (resp. standard bases) and the modular computation of the associated primes of a zero-dimensional ideal and describe their parallel implementation in SINGULAR. Our modular algorithms to solve problems over Q mainly consist of three parts, solving the problem modulo p for several primes p, lifting the result to Q by applying Chinese remainder resp. rational reconstruction, and a part of verification. Arnold proved using the Hilbert function that the verification part in the modular algorithm to compute Gr\"obner bases can be simplified for homogeneous ideals (cf. \cite{A03}). The idea of the proof could easily be adapted to the local case, i.e. for local orderings and not necessarily homogeneous ideals, using the Hilbert-Samuel function (cf. \cite{Pf07}). In this paper we prove the corresponding theorem for non-homogeneous ideals in case of a global ordering.Comment: 16 page
    • …
    corecore