22,145 research outputs found

    Synchronous Counting and Computational Algorithm Design

    Full text link
    Consider a complete communication network on nn nodes, each of which is a state machine. In synchronous 2-counting, the nodes receive a common clock pulse and they have to agree on which pulses are "odd" and which are "even". We require that the solution is self-stabilising (reaching the correct operation from any initial state) and it tolerates ff Byzantine failures (nodes that send arbitrary misinformation). Prior algorithms are expensive to implement in hardware: they require a source of random bits or a large number of states. This work consists of two parts. In the first part, we use computational techniques (often known as synthesis) to construct very compact deterministic algorithms for the first non-trivial case of f=1f = 1. While no algorithm exists for n<4n < 4, we show that as few as 3 states per node are sufficient for all values n4n \ge 4. Moreover, the problem cannot be solved with only 2 states per node for n=4n = 4, but there is a 2-state solution for all values n6n \ge 6. In the second part, we develop and compare two different approaches for synthesising synchronous counting algorithms. Both approaches are based on casting the synthesis problem as a propositional satisfiability (SAT) problem and employing modern SAT-solvers. The difference lies in how to solve the SAT problem: either in a direct fashion, or incrementally within a counter-example guided abstraction refinement loop. Empirical results suggest that the former technique is more efficient if we want to synthesise time-optimal algorithms, while the latter technique discovers non-optimal algorithms more quickly.Comment: 35 pages, extended and revised versio

    System Description for a Scalable, Fault-Tolerant, Distributed Garbage Collector

    Full text link
    We describe an efficient and fault-tolerant algorithm for distributed cyclic garbage collection. The algorithm imposes few requirements on the local machines and allows for flexibility in the choice of local collector and distributed acyclic garbage collector to use with it. We have emphasized reducing the number and size of network messages without sacrificing the promptness of collection throughout the algorithm. Our proposed collector is a variant of back tracing to avoid extensive synchronization between machines. We have added an explicit forward tracing stage to the standard back tracing stage and designed a tuned heuristic to reduce the total amount of work done by the collector. Of particular note is the development of fault-tolerant cooperation between traces and a heuristic that aggressively reduces the set of suspect objects.Comment: 47 pages, LaTe

    Incremental garbage collection in massive object stores

    Get PDF
    © 2001 IEEEThere are only a few garbage collection algorithms that have been designed to operate over massive object stores. These algorithms operate at two levels, locally via incremental collection of small partitions and globally via detection of cross partition garbage, including cyclic garbage. At each level there is a choice of collection mechanism. For example, the PMOS collector employs tracing at the local level and reference counting at the global level. Another approach implemented in the Thor object database uses tracing at both levels. In this paper we present two new algorithms that both employ reference counting at the local level. One algorithm uses reference counting at the higher level and the other uses tracing at the higher level. An evaluation strategy is presented to support comparisons between these four algorithms and preliminary experiments are outlined

    Eigenvalue-based Cyclostationary Spectrum Sensing Using Multiple Antennas

    Full text link
    In this paper, we propose a signal-selective spectrum sensing method for cognitive radio networks and specifically targeted for receivers with multiple-antenna capability. This method is used for detecting the presence or absence of primary users based on the eigenvalues of the cyclic covariance matrix of received signals. In particular, the cyclic correlation significance test is used to detect a specific signal-of-interest by exploiting knowledge of its cyclic frequencies. The analytical threshold for achieving constant false alarm rate using this detection method is presented, verified through simulations, and shown to be independent of both the number of samples used and the noise variance, effectively eliminating the dependence on accurate noise estimation. The proposed method is also shown, through numerical simulations, to outperform existing multiple-antenna cyclostationary-based spectrum sensing algorithms under a quasi-static Rayleigh fading channel, in both spatially correlated and uncorrelated noise environments. The algorithm also has significantly lower computational complexity than these other approaches.Comment: 6 pages, 6 figures, accepted to IEEE GLOBECOM 201

    Pruning Algorithms for Pretropisms of Newton Polytopes

    Full text link
    Pretropisms are candidates for the leading exponents of Puiseux series that represent solutions of polynomial systems. To find pretropisms, we propose an exact gift wrapping algorithm to prune the tree of edges of a tuple of Newton polytopes. We prefer exact arithmetic not only because of the exact input and the degrees of the output, but because of the often unpredictable growth of the coordinates in the face normals, even for polytopes in generic position. We provide experimental results with our preliminary implementation in Sage that compare favorably with the pruning method that relies only on cone intersections.Comment: exact, gift wrapping, Newton polytope, pretropism, tree pruning, accepted for presentation at Computer Algebra in Scientific Computing, CASC 201

    Estimation under group actions: recovering orbits from invariants

    Full text link
    Motivated by geometric problems in signal processing, computer vision, and structural biology, we study a class of orbit recovery problems where we observe very noisy copies of an unknown signal, each acted upon by a random element of some group (such as Z/p or SO(3)). The goal is to recover the orbit of the signal under the group action in the high-noise regime. This generalizes problems of interest such as multi-reference alignment (MRA) and the reconstruction problem in cryo-electron microscopy (cryo-EM). We obtain matching lower and upper bounds on the sample complexity of these problems in high generality, showing that the statistical difficulty is intricately determined by the invariant theory of the underlying symmetry group. In particular, we determine that for cryo-EM with noise variance σ2\sigma^2 and uniform viewing directions, the number of samples required scales as σ6\sigma^6. We match this bound with a novel algorithm for ab initio reconstruction in cryo-EM, based on invariant features of degree at most 3. We further discuss how to recover multiple molecular structures from heterogeneous cryo-EM samples.Comment: 54 pages. This version contains a number of new result
    corecore