17,376 research outputs found

    Intrusion Detection System: A Survey Using Data Mining and Learning Methods

    Get PDF
    In spite of growing information system widely, security has remained one hard-hitting area for computers as well as networks. In information protection, Intrusion Detection System (IDS) is used to safeguard the data confidentiality, integrity and system availability from various types of attacks. Data mining is an efficient artifice applied to intrusion detection to ascertain a new outline from the massive network data as well as it used to reduce the strain of the manual compilations of the normal and abnormal behavior patterns. Intrusion Detection System (IDS) is an essential method to protect network security from incoming on-line threats. Machine learning enable automates the classification of network patterns. This piece of writing reviews the present state of data mining techniques and compares various data mining techniques used to implement an intrusion detection system such as, Support Vector Machine, Genetic Algorithm, Neural network, Fuzzy Logic, Bayesian Classifier, K- Nearest Neighbor and decision tree Algorithms by highlighting a advantage and disadvantages of each of the techniques. This paper review the learning and detection methods in IDS, discuss the problems with existing intrusion detection systems and review data reduction techniques used in IDS in order to deal with huge volumes of audit data. Finally, conclusion and recommendation are included. Keywords: Classification, Data Mining, Intrusion Detection System, Security, Anomaly Detection, Types of attacks, Machine Learning Technique

    Intrusion Detection and Anomaly Detection System Using Sequential Pattern Mining

    Full text link
    Nowadays the security methods from password protected access up to firewalls which are used to secure the data as well as the networks from attackers. Several times these type of security methods are not enough to protect data. We can consider the use of Intrusion Detection Systems (IDS) is the one way to secure the data on critical systems. Most of the research work is going on the effectiveness and exactness of the intrusion detection, but these attempts are for the detection of the intrusions at the operating system and network level only. It is unable to detect the unexpected behavior of systems due to Malicious transactions in databases. The method used for spotting any interferes on the information in the form of database known as database intrusion detection. It relies on enlisting the execution of a transaction. After that, if the recognized pattern is aside from those regular patterns actual is considered as an intrusion. But the identified problem with this process is that the accuracy algorithm which is used may not identify entire patterns. This type of challenges can affect in two ways. 1) Missing of the database with regular patterns. 2) The detection process neglects some new patterns. Therefore we proposed sequential data mining method by using new Modified Apriori Algorithm. The algorithm upturns the accurateness and rate of pattern detection by the process. The Apriori algorithm with modifications is used in the proposed model

    Data mining based cyber-attack detection

    Get PDF

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated
    • …
    corecore