6,044 research outputs found

    Consistent distribution-free KK-sample and independence tests for univariate random variables

    Full text link
    A popular approach for testing if two univariate random variables are statistically independent consists of partitioning the sample space into bins, and evaluating a test statistic on the binned data. The partition size matters, and the optimal partition size is data dependent. While for detecting simple relationships coarse partitions may be best, for detecting complex relationships a great gain in power can be achieved by considering finer partitions. We suggest novel consistent distribution-free tests that are based on summation or maximization aggregation of scores over all partitions of a fixed size. We show that our test statistics based on summation can serve as good estimators of the mutual information. Moreover, we suggest regularized tests that aggregate over all partition sizes, and prove those are consistent too. We provide polynomial-time algorithms, which are critical for computing the suggested test statistics efficiently. We show that the power of the regularized tests is excellent compared to existing tests, and almost as powerful as the tests based on the optimal (yet unknown in practice) partition size, in simulations as well as on a real data example.Comment: arXiv admin note: substantial text overlap with arXiv:1308.155

    On aggregation operators of transitive similarity and dissimilarity relations

    Get PDF
    Similarity and dissimilarity are widely used concepts. One of the most studied matters is their combination or aggregation. However, transitivity property is often ignored when aggregating despite being a highly important property, studied by many authors but from different points of view. We collect here some results in preserving transitivity when aggregating, intending to clarify the relationship between aggregation and transitivity and making it useful to design aggregation operators that keep transitivity property. Some examples of the utility of the results are also shown.Peer ReviewedPostprint (published version

    Coarsening of Sand Ripples in Mass Transfer Models with Extinction

    Full text link
    Coarsening of sand ripples is studied in a one-dimensional stochastic model, where neighboring ripples exchange mass with algebraic rates, Γ(m)mγ\Gamma(m) \sim m^\gamma, and ripples of zero mass are removed from the system. For γ<0\gamma < 0 ripples vanish through rare fluctuations and the average ripples mass grows as \avem(t) \sim -\gamma^{-1} \ln (t). Temporal correlations decay as t1/2t^{-1/2} or t2/3t^{-2/3} depending on the symmetry of the mass transfer, and asymptotically the system is characterized by a product measure. The stationary ripple mass distribution is obtained exactly. For γ>0\gamma > 0 ripple evolution is linearly unstable, and the noise in the dynamics is irrelevant. For γ=1\gamma = 1 the problem is solved on the mean field level, but the mean-field theory does not adequately describe the full behavior of the coarsening. In particular, it fails to account for the numerically observed universality with respect to the initial ripple size distribution. The results are not restricted to sand ripple evolution since the model can be mapped to zero range processes, urn models, exclusion processes, and cluster-cluster aggregation.Comment: 10 pages, 8 figures, RevTeX4, submitted to Phys. Rev.

    COORDINATION OF LEADER-FOLLOWER MULTI-AGENT SYSTEM WITH TIME-VARYING OBJECTIVE FUNCTION

    Get PDF
    This thesis aims to introduce a new framework for the distributed control of multi-agent systems with adjustable swarm control objectives. Our goal is twofold: 1) to provide an overview to how time-varying objectives in the control of autonomous systems may be applied to the distributed control of multi-agent systems with variable autonomy level, and 2) to introduce a framework to incorporate the proposed concept to fundamental swarm behaviors such as aggregation and leader tracking. Leader-follower multi-agent systems are considered in this study, and a general form of time-dependent artificial potential function is proposed to describe the varying objectives of the system in the case of complete information exchange. Using Lyapunov methods, the stability and boundedness of the agents\u27 trajectories under single order and higher order dynamics are analyzed. Illustrative numerical simulations are presented to demonstrate the validity of our results. Then, we extend these results for multi-agent systems with limited information exchange and switching communication topology. The first steps of the realization of an experimental framework have been made with the ultimate goal of verifying the simulation results in practice

    Quick inference for log Gaussian Cox processes with non-stationary underlying random fields

    Full text link
    For point patterns observed in natura, spatial heterogeneity is more the rule than the exception. In numerous applications, this can be mathematically handled by the flexible class of log Gaussian Cox processes (LGCPs); in brief, a LGCP is a Cox process driven by an underlying log Gaussian random field (log GRF). This allows the representation of point aggregation, point vacuum and intermediate situations, with more or less rapid transitions between these different states depending on the properties of GRF. Very often, the covariance function of the GRF is assumed to be stationary. In this article, we give two examples where the sizes (that is, the number of points) and the spatial extents of point clusters are allowed to vary in space. To tackle such features, we propose parametric and semiparametric models of non-stationary LGCPs where the non-stationarity is included in both the mean function and the covariance function of the GRF. Thus, in contrast to most other work on inhomogeneous LGCPs, second-order intensity-reweighted stationarity is not satisfied and the usual two step procedure for parameter estimation based on e.g. composite likelihood does not easily apply. Instead we propose a fast three step procedure based on composite likelihood. We apply our modelling and estimation framework to analyse datasets dealing with fish aggregation in a reservoir and with dispersal of biological particles

    Decorrelation of Neutral Vector Variables: Theory and Applications

    Full text link
    In this paper, we propose novel strategies for neutral vector variable decorrelation. Two fundamental invertible transformations, namely serial nonlinear transformation and parallel nonlinear transformation, are proposed to carry out the decorrelation. For a neutral vector variable, which is not multivariate Gaussian distributed, the conventional principal component analysis (PCA) cannot yield mutually independent scalar variables. With the two proposed transformations, a highly negatively correlated neutral vector can be transformed to a set of mutually independent scalar variables with the same degrees of freedom. We also evaluate the decorrelation performances for the vectors generated from a single Dirichlet distribution and a mixture of Dirichlet distributions. The mutual independence is verified with the distance correlation measurement. The advantages of the proposed decorrelation strategies are intensively studied and demonstrated with synthesized data and practical application evaluations

    Fundamentals of Large Sensor Networks: Connectivity, Capacity, Clocks and Computation

    Full text link
    Sensor networks potentially feature large numbers of nodes that can sense their environment over time, communicate with each other over a wireless network, and process information. They differ from data networks in that the network as a whole may be designed for a specific application. We study the theoretical foundations of such large scale sensor networks, addressing four fundamental issues- connectivity, capacity, clocks and function computation. To begin with, a sensor network must be connected so that information can indeed be exchanged between nodes. The connectivity graph of an ad-hoc network is modeled as a random graph and the critical range for asymptotic connectivity is determined, as well as the critical number of neighbors that a node needs to connect to. Next, given connectivity, we address the issue of how much data can be transported over the sensor network. We present fundamental bounds on capacity under several models, as well as architectural implications for how wireless communication should be organized. Temporal information is important both for the applications of sensor networks as well as their operation.We present fundamental bounds on the synchronizability of clocks in networks, and also present and analyze algorithms for clock synchronization. Finally we turn to the issue of gathering relevant information, that sensor networks are designed to do. One needs to study optimal strategies for in-network aggregation of data, in order to reliably compute a composite function of sensor measurements, as well as the complexity of doing so. We address the issue of how such computation can be performed efficiently in a sensor network and the algorithms for doing so, for some classes of functions.Comment: 10 pages, 3 figures, Submitted to the Proceedings of the IEE
    corecore