171 research outputs found

    Neutro-Connectedness Theory, Algorithms and Applications

    Get PDF
    Connectedness is an important topological property and has been widely studied in digital topology. However, three main challenges exist in applying connectedness to solve real world problems: (1) the definitions of connectedness based on the classic and fuzzy logic cannot model the “hidden factors” that could influence our decision-making; (2) these definitions are too general to be applied to solve complex problem; and (4) many measurements of connectedness are heavily dependent on the shape (spatial distribution of vertices) of the graph and violate the intuitive idea of connectedness. This research focused on solving these challenges by redesigning the connectedness theory, developing fast algorithms for connectedness computation, and applying the newly proposed theory and algorithms to solve challenges in real problems. The newly proposed Neutro-Connectedness (NC) generalizes the conventional definitions of connectedness and can model uncertainty and describe the part and the whole relationship. By applying the dynamic programming strategy, a fast algorithm was proposed to calculate NC for general dataset. It is not just calculating NC map, and the output NC forest can discover a dataset’s topological structure regarding connectedness. In the first application, interactive image segmentation, two approaches were proposed to solve the two most difficult challenges: user interaction-dependence and intense interaction. The first approach, named NC-Cut, models global topologic property among image regions and reduces the dependence of segmentation performance on the appearance models generated by user interactions. It is less sensitive to the initial region of interest (ROI) than four state-of-the-art ROI-based methods. The second approach, named EISeg, provides user with visual clues to guide the interacting process based on NC. It reduces user interaction greatly by guiding user to where interacting can produce the best segmentation results. In the second application, NC was utilized to solve the challenge of weak boundary problem in breast ultrasound image segmentation. The approach can model the indeterminacy resulted from weak boundaries better than fuzzy connectedness, and achieved more accurate and robust result on our dataset with 131 breast tumor cases

    Visual Saliency Estimation and Its Applications

    Get PDF
    The human visual system can automatically emphasize some parts of the image and ignore the other parts when seeing an image or a scene. Visual Saliency Estimation (VSE) aims to imitate this functionality of the human visual system to estimate the degree of human attention attracted by different image regions and locate the salient object. The study of VSE will help us explore the way human visual systems extract objects from an image. It has wide applications, such as robot navigation, video surveillance, object tracking, self-driving, etc. The current VSE approaches on natural images models generic visual stimuli based on lower-level image features, e.g., locations, local/global contrast, and feature correlation. However, existing models still suffered from some drawbacks. First, these methods fail in the cases when the objects are near the image borders. Second, due to imperfect model assumptions, many methods cannot achieve good results when the images have complicated backgrounds. In this work, I focuses on solving these challenges on the natural images by proposing a new framework with more robust task-related priors, and I apply the framework to low-quality biomedical images. The new framework formulates VSE on natural images as a quadratic program (QP) problem. It proposes an adaptive center-based bias hypothesis to replace the most common image center-based center-bias, which is much more robust even when the objects are far away from the image center. Second, it models a new smoothness term to force similar color having similar saliency statistics, which is more robust than that based on region dissimilarity when the image has a complicated background or low contrast. The new approach achieves the best performance among 11 latest methods on three public datasets. Three approaches based on the framework by integrating both high-level domain-knowledge and robust low-level saliency assumptions are utilized to imitate the radiologists\u27 attention to detect breast tumors from breast ultrasound images

    Breast ultrasound lesions recognition::end-to-end deep learning approaches

    Get PDF
    Multistage processing of automated breast ultrasound lesions recognition is dependent on the performance of prior stages. To improve the current state of the art, we propose the use of end-to-end deep learning approaches using fully convolutional networks (FCNs), namely FCN-AlexNet, FCN-32s, FCN-16s, and FCN-8s for semantic segmentation of breast lesions. We use pretrained models based on ImageNet and transfer learning to overcome the issue of data deficiency. We evaluate our results on two datasets, which consist of a total of 113 malignant and 356 benign lesions. To assess the performance, we conduct fivefold cross validation using the following split: 70% for training data, 10% for validation data, and 20% testing data. The results showed that our proposed method performed better on benign lesions, with a top "mean Dice" score of 0.7626 with FCN-16s, when compared with the malignant lesions with a top mean Dice score of 0.5484 with FCN-8s. When considering the number of images with Dice score >0.5 , 89.6% of the benign lesions were successfully segmented and correctly recognised, whereas 60.6% of the malignant lesions were successfully segmented and correctly recognized. We conclude the paper by addressing the future challenges of the work
    • …
    corecore