1,081 research outputs found

    The Essential Role and the Continuous Evolution of Modulation Techniques for Voltage-Source Inverters in the Past, Present, and Future Power Electronics

    Get PDF
    The cost reduction of power-electronic devices, the increase in their reliability, efficiency, and power capability, and lower development times, together with more demanding application requirements, has driven the development of several new inverter topologies recently introduced in the industry, particularly medium-voltage converters. New more complex inverter topologies and new application fields come along with additional control challenges, such as voltage imbalances, power-quality issues, higher efficiency needs, and fault-tolerant operation, which necessarily requires the parallel development of modulation schemes. Therefore, recently, there have been significant advances in the field of modulation of dc/ac converters, which conceptually has been dominated during the last several decades almost exclusively by classic pulse-width modulation (PWM) methods. This paper aims to concentrate and discuss the latest developments on this exciting technology, to provide insight on where the state-of-the-art stands today, and analyze the trends and challenges driving its future

    Comparison between two VSC-HVDC transmission systems technologies : modular and neutral point clamped multilevel converter

    Get PDF
    The paper presents a detail comparison between two voltage source converter high voltage dc transmission systems, the first is based on neutral point-clamped (also known as HVDC-Light) and the second is based on innovative modular multilevel converter (known as HVDC-Plus). The comparison focuses on the reliability issues of both technologies such as fault ride-through capability and control flexibility. To address these issues, neutral point-clamped and three-level modular converters are considered in both stations of the dc transmission system, and several operating conditions are considered, including, symmetrical and asymmetrical faults. Computer simulation in Matlab-Simulink environment has been used to confirm the validity of the results

    An Advanced Three-Level Active Neutral-Point-Clamped Converter With Improved Fault-Tolerant Capabilities

    Get PDF
    A resilient fault-tolerant silicon carbide (SiC) three-level power converter topology is introduced based on the traditional active neutral-point-clamped converter. This novel converter topology incorporates a redundant leg to provide fault tolerance during switch open-circuit faults and short-circuit faults. Additionally, the topology is capable of maintaining full output voltage and maximum modulation index in the presence of switch open and short-circuit faults. Moreover, the redundant leg can be employed to share load current with other phase legs to balance thermal stress among semiconductor switches during normal operation. A 25-kW prototype of the novel topology was designed and constructed utilizing 1.2-kV SiC metal-oxide-semiconductor field-effect transistors. Experimental results confirm the anticipated theoretical capabilities of this new three-level converter topology

    Multilevel Converters: An Enabling Technology for High-Power Applications

    Get PDF
    | Multilevel converters are considered today as the state-of-the-art power-conversion systems for high-power and power-quality demanding applications. This paper presents a tutorial on this technology, covering the operating principle and the different power circuit topologies, modulation methods, technical issues and industry applications. Special attention is given to established technology already found in industry with more in-depth and self-contained information, while recent advances and state-of-the-art contributions are addressed with useful references. This paper serves as an introduction to the subject for the not-familiarized reader, as well as an update or reference for academics and practicing engineers working in the field of industrial and power electronics.Ministerio de Ciencia y Tecnología DPI2001-3089Ministerio de Eduación y Ciencia d TEC2006-0386

    Voltage Balancing Control Strategy in Converter System for Three-Level Inverters

    Get PDF
    Outcome of DC-link capacitor voltage variation on inverter switching states is accessible and designed for three-level inverter. In this paper for back-to-back system by including five-level diode clamped topologies we are proposing a novel DC link balancing method. The algorithm which we proposed here is the improvement of variable switching frequency control policy which was previously introduced by means of three-level back-to-back system which depends on calculations of adjacent capacitor voltages which focuses on three-level DC link network to identify the information about potential variation in consecutive nodes. As per the above proposal, all four capacitors in DC link network are effectively balancing the voltage. Due to optimization of switching losses the proposed method has advantages over the variable switching frequency.DOI:http://dx.doi.org/10.11591/ijece.v3i1.1471

    A survey on capacitor voltage control in neutral-point-clamped multilevel converters

    Get PDF
    Neutral-point-clamped multilevel converters are currently a suitable solution for a wide range of applications. It is well known that the capacitor voltage balance is a major issue for this topology. In this paper, a brief summary of the basic topologies, modulations, and features of neutral-point-clamped multilevel converters is presented, prior to a detailed description and analysis of the capacitor voltage balance behavior. Then, the most relevant methods to manage the capacitor voltage balance are presented and discussed, including operation in the overmodulation region, at low frequency-modulation indexes, with different numbers of AC phases, and with different numbers of levels. Both open- and closed-loop methods are discussed. Some methods based on adding external circuitry are also presented and analyzed. Although the focus of the paper is mainly DC–AC conversion, the techniques for capacitor voltage balance in DC–DC conversion are discussed as well. Finally, the paper concludes with some application examples benefiting from the presented techniques.Peer ReviewedPostprint (published version

    Power Quality Enhancement in Electricity Grids with Wind Energy Using Multicell Converters and Energy Storage

    Get PDF
    In recent years, the wind power industry is experiencing a rapid growth and more wind farms with larger size wind turbines are being connected to the power system. While this contributes to the overall security of electricity supply, large-scale deployment of wind energy into the grid also presents many technical challenges. Most of these challenges are one way or another, related to the variability and intermittent nature of wind and affect the power quality of the distribution grid. Power quality relates to factors that cause variations in the voltage level and frequency as well as distortion in the voltage and current waveforms due to wind variability which produces both harmonics and inter-harmonics. The main motivation behind work is to propose a new topology of the static AC/DC/AC multicell converter to improve the power quality in grid-connected wind energy conversion systems. Serial switching cells have the ability to achieve a high power with lower-size components and improve the voltage waveforms at the input and output of the converter by increasing the number of cells. Furthermore, a battery energy storage system is included and a power management strategy is designed to ensure the continuity of power supply and consequently the autonomy of the proposed system. The simulation results are presented for a 149.2 kW wind turbine induction generator system and the results obtained demonstrate the reduced harmonics, improved transient response, and reference tracking of the voltage output of the wind energy conversion system.Peer reviewedFinal Accepted Versio

    Optimal Modulation Algorithm for Hybrid Clamped Three-Level Inverter

    Get PDF
    The principle of a three phase hybrid clamped three-level inverter was presented. Taking sixty-four switch states into consideration, the operational states of hybrid clamped three-level inverter and different current circuits in different switch states were detailed derived. Optimal modulation algorithm was proposed based on the neutral small vectors by different combination, which can realize the automatic balancing of the neutral-point voltage with few switching cycles and did not need to measure the voltage of the clamped capacitors. The proposed modulation algorithm was also capable of restraining the turn-off over-voltage of the power switching devices effectively. Simulation results were given to verify the feasibility and correctness. Experimental results obtained by DSP-based implementation of the controller on 1 MW prototype show good performance in terms of DC-bus voltages regulation (small neutral point potential function and low DC ripple coefficient) and good sinusoidal current
    corecore