18 research outputs found

    Vom Flugabwehrgeschütz zum niedlichen Roboter: zum Wandel des Kooperation stiftenden Universalismus der Kybernetik

    Full text link
    Die Autoren untersuchen den Wandel des Kooperation stiftenden Universalismus der Kybernetik und versuchen, ihn auf indirektem Wege zu entschlüsseln. Zunächst wird die Ursprungssituation skizziert, wobei auf das immer wieder genannte exemplarische Gerät der frühen Kybernetik fokussiert wird: die intelligente Flugabwehrkanone. Dann referieren die Autoren einige Erklärungsmöglichkeiten für das 'Verschwinden' der kybernetischen Kooperationen. Anschließend wird in die Jetztzeit gesprungen, um an einigen Beispielen zu illustrieren, dass die heutige Bezugnahme auf die Kybernetik zwar genau den gleichen universalistischen Motiven folgt wie ihre klassische Vorgängerin, ihre Verkörperung sich aber in einem ganz und gar unkriegerischen Gerät findet: dem niedlichen Roboter. Auf dieser Grundlage lässt sich die Frage nach der Tradierung der Kybernetik in aller Schärfe stellen. Der kritische Durchgang durch die bestehenden Erklärungsangebote öffnet dann den Raum für die Formulierung und Illustration des Interpretationsangebotes der Autoren, das besagt, dass der kybernetische Universalismus in einer Traditionslinie spielerischer Gerätschaften gleichsam 'überwintern' konnte. Den Abschluss bildet eine vorsichtige Verallgemeinerung. (ICD

    Neues Konzept zur Bewegungsanalyse und -synthese für Humanoide Roboter basierend auf Vorbildern aus der Biologie

    Get PDF
    Es werden neue Methoden zur Bewegungsgenerierung und -analyse von humanoiden Robotern vorgestellt und zur Anwendung gebracht. Als Vorbild dienen zum Einen menschliche Reflexe, zum Anderen zentrale neuronale Mustergeneratoren (CPG) für zyklische Bewegungen. Mit Leaky Integrate-and-Fire Neuronen wird ein generisches Reflexmodell erstellt und für konkrete Reflexe realisiert. Die erstellten CPGs dienen sowohl der Bewegungsanalyse als auch der -generierung für einen zweibeinigen Demonstrator

    Integrative (Synchronisations-)Mechanismen der (Neuro-)Kognition vor dem Hintergrund des (Neo-)Konnektionismus, der Theorie der nichtlinearen dynamischen Systeme, der Informationstheorie und des Selbstorganisationsparadigmas

    Get PDF
    Der Gegenstand der vorliegenden Arbeit besteht darin, aufbauend auf dem (Haupt-)Thema, der Darlegung und Untersuchung der Lösung des Bindungsproblems anhand von temporalen integrativen (Synchronisations-)Mechanismen im Rahmen der kognitiven (Neuro-)Architekturen im (Neo-)Konnektionismus mit Bezug auf die Wahrnehmungs- und Sprachkognition, vor allem mit Bezug auf die dabei auftretende Kompositionalitäts- und Systematizitätsproblematik, die Konstruktion einer noch zu entwickelnden integrativen Theorie der (Neuro-)Kognition zu skizzie-ren, auf der Basis des Repräsentationsformats einer sog. „vektoriellen Form“, u.z. vor dem Hintergrund des (Neo-)Konnektionismus, der Theorie der nichtlinearen dynamischen Systeme, der Informationstheorie und des Selbstorganisations-Paradigmas

    Mustererkennung beim Gehen und Rennen unter verschiedenen Randbedingungen

    Get PDF

    Probabilistic environment perception for driver assistance systems

    Get PDF
    Viele aktuelle Fahrerassistenzsysteme wie beispielsweise die adaptive Geschwindigkeitsregelung, Spurwechselassistenten und Systeme zur Anhaltewegverkürzung sind auf eine verlässliche Detektion anderer Verkehrsteilnehmer und Hindernisse angewiesen. Zukünftige Assistenzsysteme wie beispielsweise Systeme für das Automatische Fahren erhöhen diese Zuverlässigkeitsanforderung weiter. Die Dissertation befasst sich mit der statistisch genauen Bewertung von Objekthypothesen innerhalb einer Sensordatenfusion, welche aus Messdaten gewonnen wurden. Für jede Hypothese wird eine Wahrscheinlichkeit bestimmt, welche angibt, ob diese vom Fahrerassistenzsystem berücksichtigt werden muss. Hierbei werden widersprüchliche Messdaten systematisch in probabilistischen Modellen aufgelöst, wobei zur Approximation der Wahrscheinlichkeitsdichtefunktion geeignete Modelle aus dem Bereich des Maschinellen Lernens eingesetzt werden. Als Ergebnis erhält man einen Schätzer, der eine präzise Relevanzwahrscheinlichkeit für beliebige Objekthypothesen erzeugt, sodass das Fahrerassistenzsystem frühzeitig und angemessen auf ein aktuelles Umfeld reagieren kann. Neben dem Objekthypothesenmodell ist als zweiter Typ von Umfeldmodellen das Belegungsgitter verbreitet, welches den Raum um das Fahrzeug in Zellen diskretisiert. Die Messdaten werden mit den jeweiligen örtlich zugehörigen Zellen assoziiert und deren Zustand wird aktualisiert. Als Ergebnis erhält man eine Menge von Zellen mit unterschiedlichen Zuständen, die beispielsweise die Überfahrbarkeit repräsentieren. Die Dissertation entwickelt formale Eigenschaften, die Fusions- und Abfragealgorithmen aufweisen müssen, um eine statistisch belastbare Aussage über die Befahrbarkeit eines aus vielen Zellen bestehenden Korridors liefern zu können. Zusätzlich werden exemplarische Algorithmen entwickelt, die diese Eigenschaften berücksichtigen und somit eine präzisere Schätzung als bekannte Ansätze erlauben.Many of today's driver assistance systems, like adaptive cruise control, lane change assistant or collision avoidance and mitigation systems require a reliable perception of other traffic participants and obstacles. Future driver assistance systems like automatic driving will further increase the requirement of a reliable environment perception. This thesis deals with the validation of object hypotheses that are generated on the base of measurements inside a sensor data fusion software. A statistically accurate probability of each object hypothesis is generated, which indicates if it should be considered by the driver assistance system. Contradictory data will be resolved systematically using probabilistic models. To approximate the underlying probabilistic density function, proper Machine Learning algorithms are used. As a result, an estimator can be presented that generates a accurate relevance probability for every object hypothesis. Driver assistance systems can now react more early and more adequately to the current environment. Beside the object model, a second type of environment model is common: The occupancy grid discretises the space around the vehicle into cells, in which each of them contains a cell state. These cell states are updated with measurements that can be associated with the cell's position. As a result, a set of cell states is generated that may represent, for instance, their trafficability. To provide a trafficability estimation of a corridor consisting of many cells, formal mathematical standards are developed. These standards must be considered from both fusion and query algorithms to perform a statistically correct estimation. Additionally, exemplary algorithms with these features are developed which can do a more accurate estimation than common approaches

    Synaptic Learning for Neuromorphic Vision - Processing Address Events with Spiking Neural Networks

    Get PDF
    Das Gehirn übertrifft herkömmliche Computerarchitekturen in Bezug auf Energieeffizienz, Robustheit und Anpassungsfähigkeit. Diese Aspekte sind auch für neue Technologien wichtig. Es lohnt sich daher, zu untersuchen, welche biologischen Prozesse das Gehirn zu Berechnungen befähigen und wie sie in Silizium umgesetzt werden können. Um sich davon inspirieren zu lassen, wie das Gehirn Berechnungen durchführt, ist ein Paradigmenwechsel im Vergleich zu herkömmlichen Computerarchitekturen erforderlich. Tatsächlich besteht das Gehirn aus Nervenzellen, Neuronen genannt, die über Synapsen miteinander verbunden sind und selbstorganisierte Netzwerke bilden. Neuronen und Synapsen sind komplexe dynamische Systeme, die durch biochemische und elektrische Reaktionen gesteuert werden. Infolgedessen können sie ihre Berechnungen nur auf lokale Informationen stützen. Zusätzlich kommunizieren Neuronen untereinander mit kurzen elektrischen Impulsen, den so genannten Spikes, die sich über Synapsen bewegen. Computational Neuroscientists versuchen, diese Berechnungen mit spikenden neuronalen Netzen zu modellieren. Wenn sie auf dedizierter neuromorpher Hardware implementiert werden, können spikende neuronale Netze wie das Gehirn schnelle, energieeffiziente Berechnungen durchführen. Bis vor kurzem waren die Vorteile dieser Technologie aufgrund des Mangels an funktionellen Methoden zur Programmierung von spikenden neuronalen Netzen begrenzt. Lernen ist ein Paradigma für die Programmierung von spikenden neuronalen Netzen, bei dem sich Neuronen selbst zu funktionalen Netzen organisieren. Wie im Gehirn basiert das Lernen in neuromorpher Hardware auf synaptischer Plastizität. Synaptische Plastizitätsregeln charakterisieren Gewichtsaktualisierungen im Hinblick auf Informationen, die lokal an der Synapse anliegen. Das Lernen geschieht also kontinuierlich und online, während sensorischer Input in das Netzwerk gestreamt wird. Herkömmliche tiefe neuronale Netze werden üblicherweise durch Gradientenabstieg trainiert. Die durch die biologische Lerndynamik auferlegten Einschränkungen verhindern jedoch die Verwendung der konventionellen Backpropagation zur Berechnung der Gradienten. Beispielsweise behindern kontinuierliche Aktualisierungen den synchronen Wechsel zwischen Vorwärts- und Rückwärtsphasen. Darüber hinaus verhindern Gedächtnisbeschränkungen, dass die Geschichte der neuronalen Aktivität im Neuron gespeichert wird, so dass Verfahren wie Backpropagation-Through-Time nicht möglich sind. Neuartige Lösungen für diese Probleme wurden von Computational Neuroscientists innerhalb des Zeitrahmens dieser Arbeit vorgeschlagen. In dieser Arbeit werden spikende neuronaler Netzwerke entwickelt, um Aufgaben der visuomotorischen Neurorobotik zu lösen. In der Tat entwickelten sich biologische neuronale Netze ursprünglich zur Steuerung des Körpers. Die Robotik stellt also den künstlichen Körper für das künstliche Gehirn zur Verfügung. Auf der einen Seite trägt diese Arbeit zu den gegenwärtigen Bemühungen um das Verständnis des Gehirns bei, indem sie schwierige Closed-Loop-Benchmarks liefert, ähnlich dem, was dem biologischen Gehirn widerfährt. Auf der anderen Seite werden neue Wege zur Lösung traditioneller Robotik Probleme vorgestellt, die auf vom Gehirn inspirierten Paradigmen basieren. Die Forschung wird in zwei Schritten durchgeführt. Zunächst werden vielversprechende synaptische Plastizitätsregeln identifiziert und mit ereignisbasierten Vision-Benchmarks aus der realen Welt verglichen. Zweitens werden neuartige Methoden zur Abbildung visueller Repräsentationen auf motorische Befehle vorgestellt. Neuromorphe visuelle Sensoren stellen einen wichtigen Schritt auf dem Weg zu hirninspirierten Paradigmen dar. Im Gegensatz zu herkömmlichen Kameras senden diese Sensoren Adressereignisse aus, die lokalen Änderungen der Lichtintensität entsprechen. Das ereignisbasierte Paradigma ermöglicht eine energieeffiziente und schnelle Bildverarbeitung, erfordert aber die Ableitung neuer asynchroner Algorithmen. Spikende neuronale Netze stellen eine Untergruppe von asynchronen Algorithmen dar, die vom Gehirn inspiriert und für neuromorphe Hardwaretechnologie geeignet sind. In enger Zusammenarbeit mit Computational Neuroscientists werden erfolgreiche Methoden zum Erlernen räumlich-zeitlicher Abstraktionen aus der Adressereignisdarstellung berichtet. Es wird gezeigt, dass Top-Down-Regeln der synaptischen Plastizität, die zur Optimierung einer objektiven Funktion abgeleitet wurden, die Bottom-Up-Regeln übertreffen, die allein auf Beobachtungen im Gehirn basieren. Mit dieser Einsicht wird eine neue synaptische Plastizitätsregel namens "Deep Continuous Local Learning" eingeführt, die derzeit den neuesten Stand der Technik bei ereignisbasierten Vision-Benchmarks erreicht. Diese Regel wurde während eines Aufenthalts an der Universität von Kalifornien, Irvine, gemeinsam abgeleitet, implementiert und evaluiert. Im zweiten Teil dieser Arbeit wird der visuomotorische Kreis geschlossen, indem die gelernten visuellen Repräsentationen auf motorische Befehle abgebildet werden. Drei Ansätze werden diskutiert, um ein visuomotorisches Mapping zu erhalten: manuelle Kopplung, Belohnungs-Kopplung und Minimierung des Vorhersagefehlers. Es wird gezeigt, wie diese Ansätze, welche als synaptische Plastizitätsregeln implementiert sind, verwendet werden können, um einfache Strategien und Bewegungen zu lernen. Diese Arbeit ebnet den Weg zur Integration von hirninspirierten Berechnungsparadigmen in das Gebiet der Robotik. Es wird sogar prognostiziert, dass Fortschritte in den neuromorphen Technologien und bei den Plastizitätsregeln die Entwicklung von Hochleistungs-Lernrobotern mit geringem Energieverbrauch ermöglicht

    Digitalisierung souverän gestalten

    Get PDF

    Forum Bildverarbeitung 2020

    Get PDF
    Image processing plays a key role for fast and contact-free data acquisition in many technical areas, e.g., in quality control or robotics. These conference proceedings of the “Forum Bildverarbeitung”, which took place on 26.-27.11.202 in Karlsruhe as a common event of the Karlsruhe Institute of Technology and the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation, contain the articles of the contributions

    Enhanced online programming for industrial robots

    Get PDF
    The use of robots and automation levels in the industrial sector is expected to grow, and is driven by the on-going need for lower costs and enhanced productivity. The manufacturing industry continues to seek ways of realizing enhanced production, and the programming of articulated production robots has been identified as a major area for improvement. However, realizing this automation level increase requires capable programming and control technologies. Many industries employ offline-programming which operates within a manually controlled and specific work environment. This is especially true within the high-volume automotive industry, particularly in high-speed assembly and component handling. For small-batch manufacturing and small to medium-sized enterprises, online programming continues to play an important role, but the complexity of programming remains a major obstacle for automation using industrial robots. Scenarios that rely on manual data input based on real world obstructions require that entire production systems cease for significant time periods while data is being manipulated, leading to financial losses. The application of simulation tools generate discrete portions of the total robot trajectories, while requiring manual inputs to link paths associated with different activities. Human input is also required to correct inaccuracies and errors resulting from unknowns and falsehoods in the environment. This study developed a new supported online robot programming approach, which is implemented as a robot control program. By applying online and offline programming in addition to appropriate manual robot control techniques, disadvantages such as manual pre-processing times and production downtimes have been either reduced or completely eliminated. The industrial requirements were evaluated considering modern manufacturing aspects. A cell-based Voronoi generation algorithm within a probabilistic world model has been introduced, together with a trajectory planner and an appropriate human machine interface. The robot programs so achieved are comparable to manually programmed robot programs and the results for a Mitsubishi RV-2AJ five-axis industrial robot are presented. Automated workspace analysis techniques and trajectory smoothing are used to accomplish this. The new robot control program considers the working production environment as a single and complete workspace. Non-productive time is required, but unlike previously reported approaches, this is achieved automatically and in a timely manner. As such, the actual cell-learning time is minimal
    corecore