10,052 research outputs found

    Effects of non-pharmacological or pharmacological interventions on cognition and brain plasticity of aging individuals.

    Get PDF
    Brain aging and aging-related neurodegenerative disorders are major health challenges faced by modern societies. Brain aging is associated with cognitive and functional decline and represents the favourable background for the onset and development of dementia. Brain aging is associated with early and subtle anatomo-functional physiological changes that often precede the appearance of clinical signs of cognitive decline. Neuroimaging approaches unveiled the functional correlates of these alterations and helped in the identification of therapeutic targets that can be potentially useful in counteracting age-dependent cognitive decline. A growing body of evidence supports the notion that cognitive stimulation and aerobic training can preserve and enhance operational skills in elderly individuals as well as reduce the incidence of dementia. This review aims at providing an extensive and critical overview of the most recent data that support the efficacy of non-pharmacological and pharmacological interventions aimed at enhancing cognition and brain plasticity in healthy elderly individuals as well as delaying the cognitive decline associated with dementia

    American Geriatrics Society and National Institute on Aging Bench-to-Bedside conference: sensory impairment and cognitive decline in older adults

    Full text link
    This article summarizes the presentations and recommendations of the tenth annual American Geriatrics Society and National Institute on Aging Bench‐to‐Bedside research conference, “Sensory Impairment and Cognitive Decline,” on October 2–3, 2017, in Bethesda, Maryland. The risk of impairment in hearing, vision, and other senses increases with age, and almost 15% of individuals aged 70 and older have dementia. As the number of older adults increases, sensory and cognitive impairments will affect a growing proportion of the population. To limit its scope, this conference focused on sensory impairments affecting vision and hearing. Comorbid vision, hearing, and cognitive impairments in older adults are more common than would be expected by chance alone, suggesting that some common mechanisms might affect these neurological systems. This workshop explored the mechanisms and consequences of comorbid vision, hearing, and cognitive impairment in older adults; effects of sensory loss on the aging brain; and bench‐to‐bedside innovations and research opportunities. Presenters and participants identified many research gaps and questions; the top priorities fell into 3 themes: mechanisms, measurement, and interventions. The workshop delineated specific research questions that provide opportunities to improve outcomes in this growing population.Funding was provided by National Institutes of Health (NIH) Grant U13 AG054139-01. Dr. Whitson's efforts and contributions were supported by R01AG043438, R24AG045050, UH2AG056925, and 5P30AG028716. Dr. Lin's effort and contributions were also supported by R01AG055426, R01HL096812, and R33DC015062. (U13 AG054139-01 - National Institutes of Health (NIH); R01AG043438; R24AG045050; UH2AG056925; 5P30AG028716; R01AG055426; R01HL096812; R33DC015062)Accepted manuscrip

    Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 274)

    Get PDF
    This bibliography lists 128 reports, articles, and other documents introduced into the NASA scientific and technical information system in July 1985

    Cortical free association dynamics: distinct phases of a latching network

    Full text link
    A Potts associative memory network has been proposed as a simplified model of macroscopic cortical dynamics, in which each Potts unit stands for a patch of cortex, which can be activated in one of S local attractor states. The internal neuronal dynamics of the patch is not described by the model, rather it is subsumed into an effective description in terms of graded Potts units, with adaptation effects both specific to each attractor state and generic to the patch. If each unit, or patch, receives effective (tensor) connections from C other units, the network has been shown to be able to store a large number p of global patterns, or network attractors, each with a fraction a of the units active, where the critical load p_c scales roughly like p_c ~ (C S^2)/(a ln(1/a)) (if the patterns are randomly correlated). Interestingly, after retrieving an externally cued attractor, the network can continue jumping, or latching, from attractor to attractor, driven by adaptation effects. The occurrence and duration of latching dynamics is found through simulations to depend critically on the strength of local attractor states, expressed in the Potts model by a parameter w. Here we describe with simulations and then analytically the boundaries between distinct phases of no latching, of transient and sustained latching, deriving a phase diagram in the plane w-T, where T parametrizes thermal noise effects. Implications for real cortical dynamics are briefly reviewed in the conclusions

    Psychological principles of successful aging technologies: A mini-review

    Get PDF
    Based on resource-oriented conceptions of successful life-span development, we propose three principles for evaluating assistive technology: (a) net resource release; (b) person specificity, and (c) proximal versus distal frames of evaluation. We discuss how these general principles can aid the design and evaluation of assistive technology in adulthood and old age, and propose two technological strategies, one targeting sensorimotor and the other cognitive functioning. The sensorimotor strategy aims at releasing cognitive resources such as attention and working memory by reducing the cognitive demands of sensory or sensorimotor aspects of performance. The cognitive strategy attempts to provide adaptive and individualized cuing structures orienting the individual in time and space by providing prompts that connect properties of the environment to the individual's action goals. We argue that intelligent assistive technology continuously adjusts the balance between `environmental support' and `self-initiated processing' in person-specific and aging-sensitive ways, leading to enhanced allocation of cognitive resources. Furthermore, intelligent assistive technology may foster the generation of formerly latent cognitive resources by activating developmental reserves (plasticity). We conclude that `lifespan technology', if co-constructed by behavioral scientists, engineers, and aging individuals, offers great promise for improving both the transition from middle adulthood to old age and the degree of autonomy in old age in present and future generations. Copyright (C) 2008 S. Karger AG, Basel

    Theories of anterior cingulate cortex function : opportunity cost

    No full text
    The target article highlights the role of the anterior cingulate cortex (ACC) in conflict monitoring, but ACC function may be better understood in terms of the hierarchical organization of behavior. This proposal suggests that the ACC selects extended goal-directed actions according to their learned costs and benefits and executes those behaviors subject to depleting resources
    • 

    corecore