391 research outputs found

    Functional connectivity estimation over large networks at cellular resolution based on electrophysiological recordings and structural prior

    Get PDF
    Despite many structural and functional aspects of the brain organization have been extensively studied in neuroscience, we are still far from a clear understanding of the intricate structure-function interactions occurring in the multi-layered brain architecture, where billions of different neurons are involved. Although structure and function can individually convey a large amount of information, only a combined study of these two aspects can probably shade light on how brain circuits develop and operate at the cellular scale. Here, we propose a novel approach for refining functional connectivity estimates within neuronal networks using the structural connectivity as prior. This is done at the mesoscale, dealing with thousands of neurons while reaching, at the microscale, an unprecedented cellular resolution. The High-Density Micro Electrode Array (HD-MEA) technology, combined with fluorescence microscopy, offers the unique opportunity to acquire structural and functional data from large neuronal cultures approaching the granularity of the single cell. In this work, an advanced method based on probabilistic directional features and heat propagation is introduced to estimate the structural connectivity from the fluorescence image while functional connectivity graphs are obtained from the cross-correlation analysis of the spiking activity. Structural and functional information are then integrated by reweighting the functional connectivity graph based on the structural prior. Results show that the resulting functional connectivity estimates are more coherent with the network topology, as compared to standard measures purely based on cross-correlations and spatio-temporal filters. We finally use the obtained results to gain some insights on which features of the functional activity are more relevant to characterize actual neuronal interactions

    Investigating Brain Functional Networks in a Riemannian Framework

    Get PDF
    The brain is a complex system of several interconnected components which can be categorized at different Spatio-temporal levels, evaluate the physical connections and the corresponding functionalities. To study brain connectivity at the macroscale, Magnetic Resonance Imaging (MRI) technique in all the different modalities has been exemplified to be an important tool. In particular, functional MRI (fMRI) enables to record the brain activity either at rest or in different conditions of cognitive task and assist in mapping the functional connectivity of the brain. The information of brain functional connectivity extracted from fMRI images can be defined using a graph representation, i.e. a mathematical object consisting of nodes, the brain regions, and edges, the link between regions. With this representation, novel insights have emerged about understanding brain connectivity and providing evidence that the brain networks are not randomly linked. Indeed, the brain network represents a small-world structure, with several different properties of segregation and integration that are accountable for specific functions and mental conditions. Moreover, network analysis enables to recognize and analyze patterns of brain functional connectivity characterizing a group of subjects. In recent decades, many developments have been made to understand the functioning of the human brain and many issues, related to the biological and the methodological perspective, are still need to be addressed. For example, sub-modular brain organization is still under debate, since it is necessary to understand how the brain is functionally organized. At the same time a comprehensive organization of functional connectivity is mostly unknown and also the dynamical reorganization of functional connectivity is appearing as a new frontier for analyzing brain dynamics. Moreover, the recognition of functional connectivity patterns in patients affected by mental disorders is still a challenging task, making plausible the development of new tools to solve them. Indeed, in this dissertation, we proposed novel methodological approaches to answer some of these biological and neuroscientific questions. We have investigated methods for analyzing and detecting heritability in twin's task-induced functional connectivity profiles. in this approach we are proposing a geodesic metric-based method for the estimation of similarity between functional connectivity, taking into account the manifold related properties of symmetric and positive definite matrices. Moreover, we also proposed a computational framework for classification and discrimination of brain connectivity graphs between healthy and pathological subjects affected by mental disorder, using geodesic metric-based clustering of brain graphs on manifold space. Within the same framework, we also propose an approach based on the dictionary learning method to encode the high dimensional connectivity data into a vectorial representation which is useful for classification and determining regions of brain graphs responsible for this segregation. We also propose an effective way to analyze the dynamical functional connectivity, building a similarity representation of fMRI dynamic functional connectivity states, exploiting modular properties of graph laplacians, geodesic clustering, and manifold learning

    Diffusion-adapted spatial filtering of fMRI data for improved activation mapping in white matter

    Get PDF
    Brain activation mapping using fMRI data has been mostly focused on finding detections in gray matter. Activations in white matter are harder to detect due to anatomical differences between both tissue types, which are rarely acknowledged in experimental design. However, recent publications have started to show evidence for the possibility of detecting meaningful activations in white matter. The shape of the activations arising from the BOLD signal is fundamentally different between white matter and gray matter, a fact which is not taken into account when applying isotropic Gaussian filtering in the preprocessing of fMRI data. We explore a graph-based description of the white matter developed from diffusion MRI data, which is capable of encoding the anisotropic domain. Based on this representation, two approaches to white matter filtering are tested, and their performance is evaluated on both semi-synthetic phantoms and real fMRI data. The first approach relies on heat kernel filtering in the graph spectral domain, and produced a clear increase in both sensitivity and specificity over isotropic Gaussian filtering. The second approach is based on spectral decomposition for the denosing of the signal, and showed increased specificity at the cost of a lower sensitivity.Novel approach to white matter filtering We introduced new advanced methods for filtering brain scans. Using them, we managed to improve the detection of activity in the white matter of the brain

    Interpretable statistics for complex modelling: quantile and topological learning

    Get PDF
    As the complexity of our data increased exponentially in the last decades, so has our need for interpretable features. This thesis revolves around two paradigms to approach this quest for insights. In the first part we focus on parametric models, where the problem of interpretability can be seen as a “parametrization selection”. We introduce a quantile-centric parametrization and we show the advantages of our proposal in the context of regression, where it allows to bridge the gap between classical generalized linear (mixed) models and increasingly popular quantile methods. The second part of the thesis, concerned with topological learning, tackles the problem from a non-parametric perspective. As topology can be thought of as a way of characterizing data in terms of their connectivity structure, it allows to represent complex and possibly high dimensional through few features, such as the number of connected components, loops and voids. We illustrate how the emerging branch of statistics devoted to recovering topological structures in the data, Topological Data Analysis, can be exploited both for exploratory and inferential purposes with a special emphasis on kernels that preserve the topological information in the data. Finally, we show with an application how these two approaches can borrow strength from one another in the identification and description of brain activity through fMRI data from the ABIDE project

    Discovering Causal Relations and Equations from Data

    Full text link
    Physics is a field of science that has traditionally used the scientific method to answer questions about why natural phenomena occur and to make testable models that explain the phenomena. Discovering equations, laws and principles that are invariant, robust and causal explanations of the world has been fundamental in physical sciences throughout the centuries. Discoveries emerge from observing the world and, when possible, performing interventional studies in the system under study. With the advent of big data and the use of data-driven methods, causal and equation discovery fields have grown and made progress in computer science, physics, statistics, philosophy, and many applied fields. All these domains are intertwined and can be used to discover causal relations, physical laws, and equations from observational data. This paper reviews the concepts, methods, and relevant works on causal and equation discovery in the broad field of Physics and outlines the most important challenges and promising future lines of research. We also provide a taxonomy for observational causal and equation discovery, point out connections, and showcase a complete set of case studies in Earth and climate sciences, fluid dynamics and mechanics, and the neurosciences. This review demonstrates that discovering fundamental laws and causal relations by observing natural phenomena is being revolutionised with the efficient exploitation of observational data, modern machine learning algorithms and the interaction with domain knowledge. Exciting times are ahead with many challenges and opportunities to improve our understanding of complex systems.Comment: 137 page

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201
    • …
    corecore