81 research outputs found

    Machine learning applications in search algorithms for gravitational waves from compact binary mergers

    Get PDF
    Gravitational waves from compact binary mergers are now routinely observed by Earth-bound detectors. These observations enable exciting new science, as they have opened a new window to the Universe. However, extracting gravitational-wave signals from the noisy detector data is a challenging problem. The most sensitive search algorithms for compact binary mergers use matched filtering, an algorithm that compares the data with a set of expected template signals. As detectors are upgraded and more sophisticated signal models become available, the number of required templates will increase, which can make some sources computationally prohibitive to search for. The computational cost is of particular concern when low-latency alerts should be issued to maximize the time for electromagnetic follow-up observations. One potential solution to reduce computational requirements that has started to be explored in the last decade is machine learning. However, different proposed deep learning searches target varying parameter spaces and use metrics that are not always comparable to existing literature. Consequently, a clear picture of the capabilities of machine learning searches has been sorely missing. In this thesis, we closely examine the sensitivity of various deep learning gravitational-wave search algorithms and introduce new methods to detect signals from binary black hole and binary neutron star mergers at previously untested statistical confidence levels. By using the sensitive distance as our core metric, we allow for a direct comparison of our algorithms to state-of-the-art search pipelines. As part of this thesis, we organized a global mock data challenge to create a benchmark for machine learning search algorithms targeting compact binaries. This way, the tools developed in this thesis are made available to the greater community by publishing them as open source software. Our studies show that, depending on the parameter space, deep learning gravitational-wave search algorithms are already competitive with current production search pipelines. We also find that strategies developed for traditional searches can be effectively adapted to their machine learning counterparts. In regions where matched filtering becomes computationally expensive, available deep learning algorithms are also limited in their capability. We find reduced sensitivity to long duration signals compared to the excellent results for short-duration binary black hole signals

    Inimaju arvutuslikke protsesside mÔistmine masinÔpe mudelite tÔlgendamise kaudu. AndmepÔhine lÀhenemine arvutuslikku neuroteadusesse

    Get PDF
    Modelleerimine on inimkonna pĂ”line viis keerulistest nĂ€htustest arusaamiseks. Planeetide liikumise mudel, gravitatsiooni mudel ja osakestefĂŒĂŒsika standardmudel on nĂ€ited selle lĂ€henemise edukusest. Neuroteaduses on olemas kaks viisi mudelite loomiseks: traditsiooniline hĂŒpoteesipĂ”hine lĂ€henemine, mille puhul kĂ”igepealt mudel sĂ”nastatakse ja alles siis valideeritakse andmete peal; ja uuem andmepĂ”hine lĂ€henemine, mis toetub masinĂ”pele, et sĂ”nastada mudeleid automaatselt. HĂŒpoteesipĂ”hine viis annab tĂ€ieliku mĂ”istmise sellest, kuidas mudel töötab, aga nĂ”uab aega, kuna iga hĂŒpotees peab olema sĂ”nastatud ja valideeritud kĂ€sitsi. AndmepĂ”hine lĂ€henemine toetub ainult andmetele ja arvutuslikele ressurssidele mudelite otsimisel, aga ei seleta kuidas tĂ€pselt mudel jĂ”uab oma tulemusteni. Me vĂ€idame, et neuroandmestike suur hulk ja nende mahu kiire kasv nĂ”uab andmepĂ”hise lĂ€henemise laiemat kasutuselevĂ”ttu neuroteaduses, nihkes uurija rolli mudelite tööprintsiipide tĂ”lgendamisele. Doktoritöö koosneb kolmest nĂ€itest neuroteaduse teadmisi avastamisest masinĂ”ppe tĂ”lgendamismeetodeid kasutades. Esimeses uuringus tĂ”lgendatava mudeli abiga me kirjeldame millised ajas muutuvad sageduskomponendid iseloomustavad inimese ajusignaali visuaalsete objektide tuvastamise ĂŒlesande puhul. Teises uuringus vĂ”rdleme omavahel signaale inimese aju ventraalses piirkonnas ja konvolutsiooniliste tehisnĂ€rvivĂ”rkude aktivatsioone erinevates kihtides. SÀÀrane vĂ”rdlus vĂ”imaldas meil kinnitada hĂŒpoteesi, et mĂ”lemad sĂŒsteemid kasutavad hierarhilist struktuuri. Viimane nĂ€ide kasutab topoloogiat sĂ€ilitavat mÔÔtmelisuse vĂ€hendamise ja visualiseerimise meetodit, et nĂ€ha, millised ajusignaalid ja mĂ”tteseisundid on ĂŒksteisele sarnased. Viimased tulemused masinĂ”ppes ja tehisintellektis nĂ€itasid et mĂ”ned mehhanismid meie ajus on sarnased mehhanismidega, milleni jĂ”uavad Ă”ppimise kĂ€igus masinĂ”ppe algoritmid. Oma tööga me rĂ”hutame masinĂ”ppe mudelite tĂ”lgendamise tĂ€htsust selliste mehhanismide avastamiseks.Building a model of a complex phenomenon is an ancient way of gaining knowledge and understanding of the reality around us. Models of planetary motion, gravity, particle physics are examples of this approach. In neuroscience, there are two ways of coming up with explanations of reality: a traditional hypothesis-driven approach, where a model is first formulated and then tested using the data, and a more recent data-driven approach, that relies on machine learning to generate models automatically. Hypothesis-driven approach provides full understanding of the model, but is time-consuming as each model has to be conceived and tested manually. Data-driven approach requires only the data and computational resources to sift through potential models, saving time, but leaving the resulting model itself to be a black box. Given the growing amount of neural data, we argue in favor of a more widespread adoption of the data-driven approach, reallocating part of the human effort from manual modeling. The thesis is based on three examples of how interpretation of machine-learned models leads to neuroscientific insights on three different levels of neural organization. Our first interpretable model is used to characterize neural dynamics of localized neural activity during the task of visual perceptual categorization. Next, we compare the activity of human visual system with the activity of a convolutional neural network, revealing explanations about the functional organization of human visual cortex. Lastly, we use dimensionality reduction and visualization techniques to understand relative organization of mental concepts within a subject's mental state space and apply it in the context of brain-computer interfaces. Recent results in neuroscience and AI show similarities between the mechanisms of both systems. This fact endorses the relevance of our approach: interpreting the mechanisms employed by machine learning models can shed light on the mechanisms employed by our brainhttps://www.ester.ee/record=b536057

    The Challenge of Machine Learning in Space Weather Nowcasting and Forecasting

    Get PDF
    The numerous recent breakthroughs in machine learning (ML) make imperative to carefully ponder how the scientific community can benefit from a technology that, although not necessarily new, is today living its golden age. This Grand Challenge review paper is focused on the present and future role of machine learning in space weather. The purpose is twofold. On one hand, we will discuss previous works that use ML for space weather forecasting, focusing in particular on the few areas that have seen most activity: the forecasting of geomagnetic indices, of relativistic electrons at geosynchronous orbits, of solar flares occurrence, of coronal mass ejection propagation time, and of solar wind speed. On the other hand, this paper serves as a gentle introduction to the field of machine learning tailored to the space weather community and as a pointer to a number of open challenges that we believe the community should undertake in the next decade. The recurring themes throughout the review are the need to shift our forecasting paradigm to a probabilistic approach focused on the reliable assessment of uncertainties, and the combination of physics-based and machine learning approaches, known as gray-box.Comment: under revie

    Leveraging Computer Vision for Applications in Biomedicine and Geoscience

    Get PDF
    Skin cancer is one of the most common types of cancer and is usually classified as either non-melanoma and melanoma skin cancer. Melanoma skin cancer accounts for about half of all skin cancer-related deaths. The 5-year survival rate is 99% when the cancer is detected early but drops to 25% once it becomes metastatic. In other words, the key to preventing death is early detection. Foraminifera are microscopic single-celled organisms that exist in marine environments and are classified as living a benthic or planktic lifestyle. In total, roughly 50,000 species are known to have existed, of which about 9,000 are still living today. Foraminifera are important proxies for reconstructing past ocean and climate conditions and as bio-indicators of anthropogenic pollution. Since the 1800s, the identification and counting of foraminifera have been performed manually. The process is resource-intensive. In this dissertation, we leverage recent advances in computer vision, driven by breakthroughs in deep learning methodologies and scale-space theory, to make progress towards both early detection of melanoma skin cancer and automation of the identification and counting of microscopic foraminifera. First, we investigate the use of hyperspectral images in skin cancer detection by performing a critical review of relevant, peer-reviewed research. Second, we present a novel scale-space methodology for detecting changes in hyperspectral images. Third, we develop a deep learning model for classifying microscopic foraminifera. Finally, we present a deep learning model for instance segmentation of microscopic foraminifera. The works presented in this dissertation are valuable contributions in the fields of biomedicine and geoscience, more specifically, towards the challenges of early detection of melanoma skin cancer and automation of the identification, counting, and picking of microscopic foraminifera

    Challenges and Opportunities of End-to-End Learning in Medical Image Classification

    Get PDF
    Das Paradigma des End-to-End Lernens hat in den letzten Jahren die Bilderkennung revolutioniert, aber die klinische Anwendung hinkt hinterher. Bildbasierte computergestĂŒtzte Diagnosesysteme basieren immer noch weitgehend auf hochtechnischen und domĂ€nen-spezifischen Pipelines, die aus unabhĂ€ngigen regelbasierten Modellen bestehen, welche die Teilaufgaben der Bildklassifikation wiederspiegeln: Lokalisation von auffĂ€lligen Regionen, Merkmalsextraktion und Entscheidungsfindung. Das Versprechen einer ĂŒberlegenen Entscheidungsfindung beim End-to-End Lernen ergibt sich daraus, dass domĂ€nenspezifische Zwangsbedingungen von begrenzter KomplexitĂ€t entfernt werden und stattdessen alle Systemkomponenten gleichzeitig, direkt anhand der Rohdaten, und im Hinblick auf die letztendliche Aufgabe optimiert werden. Die GrĂŒnde dafĂŒr, dass diese Vorteile noch nicht den Weg in die Klinik gefunden haben, d.h. die Herausforderungen, die sich bei der Entwicklung Deep Learning-basierter Diagnosesysteme stellen, sind vielfĂ€ltig: Die Tatsache, dass die GeneralisierungsfĂ€higkeit von Lernalgorithmen davon abhĂ€ngt, wie gut die verfĂŒgbaren Trainingsdaten die tatsĂ€chliche zugrundeliegende Datenverteilung abbilden, erweist sich in medizinische Anwendungen als tiefgreifendes Problem. Annotierte DatensĂ€tze in diesem Bereich sind notorisch klein, da fĂŒr die Annotation eine kostspielige Beurteilung durch Experten erforderlich ist und die Zusammenlegung kleinerer DatensĂ€tze oft durch Datenschutzauflagen und Patientenrechte erschwert wird. DarĂŒber hinaus weisen medizinische DatensĂ€tze drastisch unterschiedliche Eigenschaften im Bezug auf BildmodalitĂ€ten, Bildgebungsprotokolle oder Anisotropien auf, und die oft mehrdeutige Evidenz in medizinischen Bildern kann sich auf inkonsistente oder fehlerhafte Trainingsannotationen ĂŒbertragen. WĂ€hrend die Verschiebung von Datenverteilungen zwischen Forschungsumgebung und RealitĂ€t zu einer verminderten Modellrobustheit fĂŒhrt und deshalb gegenwĂ€rtig als das Haupthindernis fĂŒr die klinische Anwendung von Lernalgorithmen angesehen wird, wird dieser Graben oft noch durch Störfaktoren wie Hardwarelimitationen oder GranularitĂ€t von gegebenen Annotation erweitert, die zu Diskrepanzen zwischen der modellierten Aufgabe und der zugrunde liegenden klinischen Fragestellung fĂŒhren. Diese Arbeit untersucht das Potenzial des End-to-End-Lernens in klinischen Diagnosesystemen und prĂ€sentiert BeitrĂ€ge zu einigen der wichtigsten Herausforderungen, die derzeit eine breite klinische Anwendung verhindern. ZunĂ€chst wird der letzten Teil der Klassifikations-Pipeline untersucht, die Kategorisierung in klinische Pathologien. Wir demonstrieren, wie das Ersetzen des gegenwĂ€rtigen klinischen Standards regelbasierter Entscheidungen durch eine groß angelegte Merkmalsextraktion gefolgt von lernbasierten Klassifikatoren die Brustkrebsklassifikation im MRT signifikant verbessert und eine Leistung auf menschlichem Level erzielt. Dieser Ansatz wird weiter anhand von kardiologischer Diagnose gezeigt. Zweitens ersetzen wir, dem Paradigma des End-to-End Lernens folgend, das biophysikalische Modell, das fĂŒr die Bildnormalisierung in der MRT angewandt wird, sowie die Extraktion handgefertigter Merkmale, durch eine designierte CNN-Architektur und liefern eine eingehende Analyse, die das verborgene Potenzial der gelernten Bildnormalisierung und einen KomplementĂ€rwert der gelernten Merkmale gegenĂŒber den handgefertigten Merkmalen aufdeckt. WĂ€hrend dieser Ansatz auf markierten Regionen arbeitet und daher auf manuelle Annotation angewiesen ist, beziehen wir im dritten Teil die Aufgabe der Lokalisierung dieser Regionen in den Lernprozess ein, um eine echte End-to-End-Diagnose baserend auf den Rohbildern zu ermöglichen. Dabei identifizieren wir eine weitgehend vernachlĂ€ssigte Zwangslage zwischen dem Streben nach der Auswertung von Modellen auf klinisch relevanten Skalen auf der einen Seite, und der Optimierung fĂŒr effizientes Training unter Datenknappheit auf der anderen Seite. Wir prĂ€sentieren ein Deep Learning Modell, das zur Auflösung dieses Kompromisses beitrĂ€gt, liefern umfangreiche Experimente auf drei medizinischen DatensĂ€tzen sowie eine Serie von Toy-Experimenten, die das Verhalten bei begrenzten Trainingsdaten im Detail untersuchen, und publiziren ein umfassendes Framework, das unter anderem die ersten 3D-Implementierungen gĂ€ngiger Objekterkennungsmodelle umfasst. Wir identifizieren weitere Hebelpunkte in bestehenden End-to-End-Lernsystemen, bei denen DomĂ€nenwissen als Zwangsbedingung dienen kann, um die Robustheit von Modellen in der medizinischen Bildanalyse zu erhöhen, die letztendlich dazu beitragen sollen, den Weg fĂŒr die Anwendung in der klinischen Praxis zu ebnen. Zu diesem Zweck gehen wir die Herausforderung fehlerhafter Trainingsannotationen an, indem wir die Klassifizierungskompnente in der End-to-End-Objekterkennung durch Regression ersetzen, was es ermöglicht, Modelle direkt auf der kontinuierlichen Skala der zugrunde liegenden pathologischen Prozesse zu trainieren und so die Robustheit der Modelle gegenĂŒber fehlerhaften Trainingsannotationen zu erhöhen. Weiter adressieren wir die Herausforderung der Input-HeterogenitĂ€ten, mit denen trainierte Modelle konfrontiert sind, wenn sie an verschiedenen klinischen Orten eingesetzt werden, indem wir eine modellbasierte DomĂ€nenanpassung vorschlagen, die es ermöglicht, die ursprĂŒngliche TrainingsdomĂ€ne aus verĂ€nderten Inputs wiederherzustellen und damit eine robuste Generalisierung zu gewĂ€hrleisten. Schließlich befassen wir uns mit dem höchst unsystematischen, aufwendigen und subjektiven Trial-and-Error-Prozess zum Finden von robusten Hyperparametern fĂŒr einen gegebene Aufgabe, indem wir DomĂ€nenwissen in ein Set systematischer Regeln ĂŒberfĂŒhren, die eine automatisierte und robuste Konfiguration von Deep Learning Modellen auf einer Vielzahl von medizinischen Datensetzen ermöglichen. Zusammenfassend zeigt die hier vorgestellte Arbeit das enorme Potenzial von End-to-End Lernalgorithmen im Vergleich zum klinischen Standard mehrteiliger und hochtechnisierter Diagnose-Pipelines auf, und prĂ€sentiert LösungsansĂ€tze zu einigen der wichtigsten Herausforderungen fĂŒr eine breite Anwendung unter realen Bedienungen wie Datenknappheit, Diskrepanz zwischen der vom Modell behandelten Aufgabe und der zugrunde liegenden klinischen Fragestellung, Mehrdeutigkeiten in Trainingsannotationen, oder Verschiebung von DatendomĂ€nen zwischen klinischen Standorten. Diese BeitrĂ€ge können als Teil des ĂŒbergreifende Zieles der Automatisierung von medizinischer Bildklassifikation gesehen werden - ein integraler Bestandteil des Wandels, der erforderlich ist, um die Zukunft des Gesundheitswesens zu gestalten

    xxAI - Beyond Explainable AI

    Get PDF
    This is an open access book. Statistical machine learning (ML) has triggered a renaissance of artificial intelligence (AI). While the most successful ML models, including Deep Neural Networks (DNN), have developed better predictivity, they have become increasingly complex, at the expense of human interpretability (correlation vs. causality). The field of explainable AI (xAI) has emerged with the goal of creating tools and models that are both predictive and interpretable and understandable for humans. Explainable AI is receiving huge interest in the machine learning and AI research communities, across academia, industry, and government, and there is now an excellent opportunity to push towards successful explainable AI applications. This volume will help the research community to accelerate this process, to promote a more systematic use of explainable AI to improve models in diverse applications, and ultimately to better understand how current explainable AI methods need to be improved and what kind of theory of explainable AI is needed. After overviews of current methods and challenges, the editors include chapters that describe new developments in explainable AI. The contributions are from leading researchers in the field, drawn from both academia and industry, and many of the chapters take a clear interdisciplinary approach to problem-solving. The concepts discussed include explainability, causability, and AI interfaces with humans, and the applications include image processing, natural language, law, fairness, and climate science.https://digitalcommons.unomaha.edu/isqafacbooks/1000/thumbnail.jp

    Beyond Extractive: Advancing Abstractive Automatic Text Summarization in Norwegian with Transformers

    Get PDF
    Automatic summarization is a key area in natural language processing (NLP) and machine learning which attempts to generate informative summaries of articles and documents. Despite its evolution since the 1950s, research on automatically summarising Norwegian text has remained relatively underdeveloped. Though there have been some strides made in extractive systems, which generate summaries by selecting and condensing key phrases directly from the source material, the field of abstractive summarization remains unexplored for the Norwegian language. Abstractive summarization is distinct as it generates summaries incorporating new words and phrases not present in the original text. This Master's thesis revolves around one key question: Is it possible to create a machine learning system capable of performing abstractive summarization in Norwegian? To answer this question, we generate and release the first two Norwegian datasets for creating and evaluating Norwegian summarization models. One of these datasets is a web scrape of Store Norske Leksikon (SNL), and the other is a machine-translated version of CNN/Daily Mail. Using these datasets, we fine-tune two Norwegian T5 language models with 580M and 1.2B parameters to create summaries. To assess the quality of the models, we employed both automatic ROUGE scores and human evaluations on the generated summaries. In an effort to better understand the model's behaviour, we measure how a model generates summaries with various metrics, including our own novel contribution which we name "Match Ratio" which measures sentence similarities between summaries and articles based on Levenshtein distances. The top-performing models achieved ROUGE-1 scores of 35.07 and 34.02 on SNL and CNN/DM, respectively. In terms of human evaluation, the best model yielded an average score of 3.96/5.00 for SNL and 4.64/5.00 for CNN/Daily Mail across various criteria. Based on these results, we conclude that it is possible to perform abstractive summarization of Norwegian with high-quality summaries. With this research, we have laid a foundation that hopefully will facilitate future research, empowering others to build upon our findings and contribute further to the development of Norwegian summarization models

    xxAI - Beyond Explainable AI

    Get PDF
    This is an open access book. Statistical machine learning (ML) has triggered a renaissance of artificial intelligence (AI). While the most successful ML models, including Deep Neural Networks (DNN), have developed better predictivity, they have become increasingly complex, at the expense of human interpretability (correlation vs. causality). The field of explainable AI (xAI) has emerged with the goal of creating tools and models that are both predictive and interpretable and understandable for humans. Explainable AI is receiving huge interest in the machine learning and AI research communities, across academia, industry, and government, and there is now an excellent opportunity to push towards successful explainable AI applications. This volume will help the research community to accelerate this process, to promote a more systematic use of explainable AI to improve models in diverse applications, and ultimately to better understand how current explainable AI methods need to be improved and what kind of theory of explainable AI is needed. After overviews of current methods and challenges, the editors include chapters that describe new developments in explainable AI. The contributions are from leading researchers in the field, drawn from both academia and industry, and many of the chapters take a clear interdisciplinary approach to problem-solving. The concepts discussed include explainability, causability, and AI interfaces with humans, and the applications include image processing, natural language, law, fairness, and climate science
    • 

    corecore