484 research outputs found

    Resistive communications based on neuristors

    Full text link
    Memristors are passive elements that allow us to store information using a single element per bit. However, this is not the only utility of the memristor. Considering the physical chemical structure of the element used, the memristor can function at the same time as memory and as a communication unit. This paper presents a new approach to the use of the memristor and develops the concept of resistive communication

    Neuro-memristive Circuits for Edge Computing: A review

    Full text link
    The volume, veracity, variability, and velocity of data produced from the ever-increasing network of sensors connected to Internet pose challenges for power management, scalability, and sustainability of cloud computing infrastructure. Increasing the data processing capability of edge computing devices at lower power requirements can reduce several overheads for cloud computing solutions. This paper provides the review of neuromorphic CMOS-memristive architectures that can be integrated into edge computing devices. We discuss why the neuromorphic architectures are useful for edge devices and show the advantages, drawbacks and open problems in the field of neuro-memristive circuits for edge computing

    Connecting Spiking Neurons to a Spiking Memristor Network Changes the Memristor Dynamics

    Full text link
    Memristors have been suggested as neuromorphic computing elements. Spike-time dependent plasticity and the Hodgkin-Huxley model of the neuron have both been modelled effectively by memristor theory. The d.c. response of the memristor is a current spike. Based on these three facts we suggest that memristors are well-placed to interface directly with neurons. In this paper we show that connecting a spiking memristor network to spiking neuronal cells causes a change in the memristor network dynamics by: removing the memristor spikes, which we show is due to the effects of connection to aqueous medium; causing a change in current decay rate consistent with a change in memristor state; presenting more-linear ItI-t dynamics; and increasing the memristor spiking rate, as a consequence of interaction with the spiking neurons. This demonstrates that neurons are capable of communicating directly with memristors, without the need for computer translation.Comment: Conference paper, 4 page

    Hardware design of LIF with Latency neuron model with memristive STDP synapses

    Full text link
    In this paper, the hardware implementation of a neuromorphic system is presented. This system is composed of a Leaky Integrate-and-Fire with Latency (LIFL) neuron and a Spike-Timing Dependent Plasticity (STDP) synapse. LIFL neuron model allows to encode more information than the common Integrate-and-Fire models, typically considered for neuromorphic implementations. In our system LIFL neuron is implemented using CMOS circuits while memristor is used for the implementation of the STDP synapse. A description of the entire circuit is provided. Finally, the capabilities of the proposed architecture have been evaluated by simulating a motif composed of three neurons and two synapses. The simulation results confirm the validity of the proposed system and its suitability for the design of more complex spiking neural network
    corecore