2 research outputs found

    Neuromorphic LIF Row-by-Row Multiconvolution Processor for FPGA

    Get PDF
    Deep Learning algorithms have become state-of-theart methods for multiple fields, including computer vision, speech recognition, natural language processing, and audio recognition, among others. In image vision, convolutional neural networks (CNN) stand out. This kind of network is expensive in terms of computational resources due to the large number of operations required to process a frame. In recent years, several frame-based chip solutions to deploy CNN for real time have been developed. Despite the good results in power and accuracy given by these solutions, the number of operations is still high, due the complexity of the current network models. However, it is possible to reduce the number of operations using different computer vision techniques other than frame-based, e.g., neuromorphic event-based techniques. There exist several neuromorphic vision sensors whose pixels detect changes in luminosity. Inspired in the leaky integrate-and-fire (LIF) neuron, we propose in this manuscript an event-based field-programmable gate array (FPGA) multiconvolution system. Its main novelty is the combination of a memory arbiter for efficient memory access to allowrow-by-rowkernel processing. This system is able to convolve 64 filters across multiple kernel sizes, from 1 × 1 to 7 × 7, with latencies of 1.3 μs and 9.01 μs, respectively, generating a continuous flow of output events. The proposed architecture will easily fit spike-based CNNs.Ministerio de Economía y Competitividad TEC2016-77785-

    Neuromorphic deep convolutional neural network learning systems for FPGA in real time

    Get PDF
    Deep Learning algorithms have become one of the best approaches for pattern recognition in several fields, including computer vision, speech recognition, natural language processing, and audio recognition, among others. In image vision, convolutional neural networks stand out, due to their relatively simple supervised training and their efficiency extracting features from a scene. Nowadays, there exist several implementations of convolutional neural networks accelerators that manage to perform these networks in real time. However, the number of operations and power consumption of these implementations can be reduced using a different processing paradigm as neuromorphic engineering. Neuromorphic engineering field studies the behavior of biological and inner systems of the human neural processing with the purpose of design analog, digital or mixed-signal systems to solve problems inspired in how human brain performs complex tasks, replicating the behavior and properties of biological neurons. Neuromorphic engineering tries to give an answer to how our brain is capable to learn and perform complex tasks with high efficiency under the paradigm of spike-based computation. This thesis explores both frame-based and spike-based processing paradigms for the development of hardware architectures for visual pattern recognition based on convolutional neural networks. In this work, two FPGA implementations of convolutional neural networks accelerator architectures for frame-based using OpenCL and SoC technologies are presented. Followed by a novel neuromorphic convolution processor for spike-based processing paradigm, which implements the same behaviour of leaky integrate-and-fire neuron model. Furthermore, it reads the data in rows being able to perform multiple layers in the same chip. Finally, a novel FPGA implementation of Hierarchy of Time Surfaces algorithm and a new memory model for spike-based systems are proposed
    corecore